Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Professors Use Machine Learning to Guide the Design of Stable Nanoparticles

Wednesday, September 22, 2021, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesCollege of Engineering and Computer SciencefacultygrantNational Science FoundationresearchSTEM

Nanoparticles are tiny particles, made of only a few hundred atoms, that are helping to create the world’s newest “smart” surfaces and systems. Nanoparticles are playing a key role in the development of such cutting-edge consumer products as transparent sunscreens and stain repellent fabrics. They are also being designed for biomedical applications like drug delivery inside the body.

Sounds like a miracle substance, right? The hurdle is that identifying one in the lab is akin to finding a needle in a haystack. Out of a potential pool of hundreds of thousands of nanoparticles, only a few may actually be viable—meaning they are the right size and will work within a specific temperature range (e.g., body temperature). So how can researchers facilitate the process? Machine learning.

two headshots

Davoud Mozhdehi (left) and Shikha Nangia

Davoud Mozhdehi, assistant professor of chemistry in the College of Arts and Sciences (A&S), and Shikha Nangia, associate professor of biomedical and chemical engineering in the College of Engineering and Computer Science (ECS), have been awarded a $575,000 grant from the National Science Foundation to develop a machine learning approach to aid in the discovery and design of new smart nano-biomaterials.

This project stems from the team’s recent effort to design models for a nanoparticle to deliver therapeutic drugs to the brain. When the group used their theories to make a prediction about the size and stability for the particles to work at certain temperatures, they found out that their model was wrong. Undaunted, that setback motivated them to delve deeper into finding a new way to come up with predictive rules to guide the design of nanoparticles.

Thanks to a CUSE grant, Mozhdehi and Nangia collected preliminary data that contributed to a key part of their new proposal, which established the feasibility of using computers to predict the functional properties of nanoparticles. Their current project combines inputs from simulations and experiments, and uses machine learning to sort through vast amounts of data to better predict the properties for a nanoparticle to respond at specific temperatures.

Their collaborative project will integrate experiments from Mozhdehi’s lab that explore physical properties such as size and shape, and computational simulations from Nangia’s lab.

By incorporating machine learning, Nangia and her students will design algorithms to simulate millions of variations of nanoparticles, based on data from previous experiments and simulations, to speed up the design of temperature responsive nanoparticles. This integrated approach can reduce the design time by 100 to 1,000 times. That is, the work that used to take one year can now be done in one to four days with their new approach.

The team’s method will look to identify patterns in the data in order to determine which nanoparticles are stable at the precise temperatures. Researchers compare their process to Google and Facebook’s algorithms that comb through millions of user datapoints in order to group individuals based on the links they select and the items they purchase online. Their algorithms will cluster particles which look different but behave the same way—like different individuals who click on the same link. Their goal is to extract attributes and evaluate what made certain particles similar and what made them dissimilar in order to develop theories to help model stable nanoparticles.

Once they know more about functional temperatures, Mozhdehi’s lab will then run experiments to determine physical characteristics such as possible size and shape of the nanoparticles. Their results can then be applied back to the machine learning arm of the project to better calibrate those results.

Mozhdehi and Nangia, both members of the BioInspired Institute, are hopeful that this project will establish a cost-effective method to drive rules that will one day lead to the development of nanoparticles that are stable at a wide range of temperatures. Researchers say this foundational research could lead to the development of future nano-biomaterials that can deliver therapeutic drugs directly to cancerous growths and damaged organs.

  • Author

Dan Bernardi

  • Recent
  • Behind the Greens with Drumlins’ Peter McPartland
    Friday, June 24, 2022, By Abby Haessig
  • Tips for Managing Your Spring (Achoo!) Allergies
    Friday, June 24, 2022, By Diane Stirling
  • 9 Faculty Members Presented NSF CAREER Awards
    Friday, June 24, 2022, By Diane Stirling
  • Faculty expert reflects on 80th anniversary of Holocaust publication
    Thursday, June 23, 2022, By Vanessa Marquette
  • Syracuse Views Spring/Summer 2022
    Wednesday, June 22, 2022, By News Staff

More In STEM

Two Professors Win Prestigious Google Research Scholar Awards

Assistant Professors Ferdinando Fioretto and Endadul Hoque, faculty members in the College of Engineering and Computer Science, have earned highly competitive Google Research Scholar awards. The Google Research Scholar Program provides unrestricted gifts of up to $60,000 to support research…

Hidden in Plain Sight: A&S Biologists Say Southern Right Whale Habitat Choice is Key to Keeping Young Calves Safe

Sitting on a beach looking out to sea, it may seem unusual to spot one of the world’s largest animals swimming in shallow, coastal, 30-foot-deep waters. But each winter, female southern right whales migrate thousands of miles to bay habitats…

AFRL-Syracuse University Consider Quantum Research Pairing, Student Opportunities for Future Collaborations

More than 30 Syracuse University faculty and leaders and representatives from the U.S. Air Force Research Lab convened on campus on May 6 to ideate around future collaboration opportunities. These include combined research initiatives in quantum information science and quantum…

Graduate Students Bring Physics to Local Classrooms With Outreach Program

“When am I ever going to use this in real life?” That is the oft-heard refrain from middle- and high-school science students, struggling through labs and formulas that feel as far removed from their day-to-day as, well, space travel. Sarthak…

Bringing ‘CSI’ Into the Classroom

Dusting for fingerprints, documenting blood stain patterns and measuring bullet trajectory—you might think this is a description of a recent episode from the popular television series “CSI.” While this may be true, these are also the daily lessons students are…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.