Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Using Syracuse Lava to Understand Metal Worlds

Tuesday, April 6, 2021, By Dan Bernardi
Share
CUSE grantsfacultyResearch and CreativeSTEM
artist rendering of asteroid

Artist rendering of the metallic asteroid 16 Psyche. (Courtesy: Shutterstock)

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary body made of metal rather than those dominated by rock and ice, such as the Earth, Moon or Mars. Inspired by that historic mission, researchers from Syracuse University and North Carolina State have collaborated to investigate how different lava types would flow on a planetary body made of mostly metal, like 16 Psyche. The team then plans to share the published results with NASA and other investigators interested in the 2022 NASA mission to the “metal world.”

As molten rock, or magma, from deep inside Earth oozes out onto the planet’s surface, the stream of hot liquid that pours out is then called lava. Lava is one of the fundamental materials that creates and modifies landscapes on planetary bodies in our solar system. The shapes of volcanic landscapes on Earth provide the basis for understanding eruptions on other planets.

Unfortunately for scientists, it is difficult to study active lava flows in nature due to the unpredictability and danger associated with research near an eruption. But researchers at A&S have found a way to study lava more safely. Since 2009, the Syracuse Lava Project has been recreating lava flows under controlled conditions on the Syracuse University campus by melting rocks to different temperatures using furnaces. They create meter-scale flows of molten basaltic lava, the same black lava that covers the seafloor, Hawaii, Iceland and other volcanic terranes on Earth and other planets.

When rock is melted under these extreme conditions, researchers at the Syracuse Lava Project observe an iron-rich material separating out from the molten basaltic lava and sinking to the bottom of the furnace due to its higher density.

In a recent paper published in Nature Communications, the team reported results from their experiments with “ferrovolcanism,” in which metallic flows separate from and interact with the more common basaltic flows. The group included lead author Arianna Soldati, assistant professor of marine, earth and atmospheric sciences at NC State, along with researchers from Syracuse University, including James Farrell, postdoctoral researcher; Bob Wysocki, associate professor in the College of Visual and Performing Arts; and Jeff Karson, the Jessie Page Heroy Professor and Department Chair of Earth and Environmental Sciences.

The team reports that the metallic lava flows traveled 10 times faster and spread more thinly than the basaltic flows, breaking into distinctive braided channels. The metal also traveled largely beneath the cooling basaltic flow, emerging from the leading edge of the composite flow.

“Although this is a pilot project, there are still some things we can say,” Soldati says. “If there were volcanoes on 16 Psyche—or on another metallic body—they definitely wouldn’t look like the steep-sided Mt. Fuji, an iconic terrestrial volcano. Instead, they would probably have gentle slopes and broad cones. That’s how an iron volcano would be built—by thin flows that expand over longer distances.”

According to Karson, this work shows how molten materials anticipated on planetary surfaces can interact to create distinctive flow “morphologies.” These different shapes and textures of lava can be related to their densities, compositions and viscosities.

“Volcanism is one of the first-order processes that shapes planetary surfaces,” Karson says. “Molten silicate flows (for example, basalt as seen in Hawaii or Iceland or the seafloor) dominate on Earth but other molten materials may be important in other settings. Molten iron-rich flows are likely to have occurred on some planetary bodies, but have not yet been observed. Our experiments show how they might behave and the type of surface features they might produce.”

They plan to follow up their research with a series of experiments later this year supported by a Syracuse University CUSE grant to document variations in experimental parameters that will allow them to observe how the metallic lava might behave during eruptive processes.

  • Author

Dan Bernardi

  • Recent
  • Syracuse University Press Participating in Path to Open Program
    Friday, September 29, 2023, By Cristina Hatem
  • A&S Chemistry Professor Receives Award From the American Chemical Society
    Friday, September 29, 2023, By News Staff
  • ‘Guys and Dolls’ Opens Syracuse University Department of Drama 2023/24 Season
    Friday, September 29, 2023, By Joanna Penalva
  • Libraries Add MindSpa Wellness Rooms
    Friday, September 29, 2023, By Cristina Hatem
  • iSchool Professors, Students Honored With ALISE Awards
    Friday, September 29, 2023, By Anya Woods

More In STEM

A&S Chemistry Professor Receives Award From the American Chemical Society

Robert Doyle, Dean’s Professor of Chemistry in the College of Arts and Sciences (A&S) and associate professor of pharmacology at SUNY Upstate Medical University, received the 2022 American Chemical Society Central New York Section Award in the field of chemistry…

Syracuse University Announces the Opening of the Center for Gravitational Wave Astronomy and Astrophysics

As Albert Einstein predicted in his theory of relativity more than one hundred years ago, gravitational waves have been rippling through the fabric of space-time since the dawn of the cosmos. Only in the past decade have scientists observed actual…

iSchool Professors, Students Honored With ALISE Awards

Two students and three professors from the School of Information Studies (iSchool) were recently honored with prestigious awards from the Association for Library and Information Science Education (ALISE). Assistant Professor LaVerne Gray was awarded the Norman Horrocks Leadership Award for demonstrating outstanding leadership…

Ian Hosein Awarded New Patent For Process that Generates Energy from Saltwater

The lack of access to clean drinking water impacts billions worldwide. With an estimated 46% of the global population affected, underdeveloped communities don’t have the means to utilize efficient technology for water purification. As the percentage of those affected grows,…

Setting the Agenda in Biology Research: 2 Professors Join NIH Peer Review Committees

The Center for Scientific Review (CSR) is known as the “gateway” for National Institutes of Health (NIH) grant applications. Expert peer review groups—also called study sections—formed by the CSR assess more than 75% of the thousands of research grant applications…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.