Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Catheters Get Smarter With New Engineering Design from Syracuse University Faculty

Tuesday, May 5, 2020, By Alex Dunbar
Share
BioInspired

Each year, more than 75 million urinary catheters are used in the United States to help patients who cannot control urination due to medical complications. Unfortunately, the catheters are prone to colonization by bacterial and fungal pathogens. If not addressed, this can lead to catheter associated urinary tract infections (CAUTIs) that are antibiotic resistant and cause 13,000 deaths in the U.S. each year. To address the challenge of CAUTI,  College of Engineering and Computer Science professors Dacheng Ren, professor of biomedical and chemical engineering; Teng Zhang, professor of mechanical and aerospace engineering; and Huan Gu, research assistant professor, started investigating if they could engineer smart anti-fouling catheters that would reduce microbial attachment and related infections.

Professors

Dacheng Ren, Teng Zhang, Huan Gu

“The idea of this work was inspired by biological systems in nature. For example, humans have developed innate immunity that protect us from infections despite our constant contact with bacteria,” says Ren. “We thought that maybe antifouling catheters can be engineered with active topographies mimicking the cilia of epithelial cells, which can beat to repel bacteria from the lung.”

They successfully created micron-sized pillars with supermagnetic nanoparticles on the tip so the pillars can beat in response to an electromagnetic field generated using an insulated copper coil embedded in the catheter wall. By controlling the on and off of an electric current, they found they could turn the magnetic field on and off as well, and thus control the beating frequency and beating force of the pillars. This strategy worked well, as their prototype catheter remained clean for 30 days while the control catheters were blocked by biofilms of uropathogenic Escherichia coli within five days in an in vitro test with flow of a medium mimicking urine. Their study was published in a recent issue of Nature Communications.

Close collaboration between the experimental work in Ren’s lab and the numerical simulation from Zhang were the keys to this study.

“The simulations based on mechanics models allow us to verify our hypothesis of the biofilm failure and identify the important governing factors, which can provide a quantitative guidance of the pillar design for a more efficient removal of the biofilms,” says Zhang.

Related research work in Ren and Zhang’s labs is funded by the National Institutes of Health and the National Science Foundation.

  • Author

Alex Dunbar

  • Recent
  • Syracuse University/SUNY-ESF Team Wins ‘JUMP into STEM’ Competition
    Tuesday, March 2, 2021, By Julie Sharkey
  • US Army Awards Meritorious Civilian Service Medal to Professor Mark Glauser
    Tuesday, March 2, 2021, By Alex Dunbar
  • ‘Is Election Disinformation Free Speech or Defamation? Courts Will Decide’
    Tuesday, March 2, 2021, By Lily Datz
  • University to Guarantee Admission to Eligible Area High School Graduates After Completing Initial Enlistment in US Military
    Tuesday, March 2, 2021, By Brandon Dyer
  • Q&A With Keith Henderson, the University’s New Chief Compliance Officer
    Monday, March 1, 2021, By News Staff

More In STEM

Syracuse University/SUNY-ESF Team Wins ‘JUMP into STEM’ Competition

A team of graduate students representing Syracuse University and the SUNY College of Environmental Science and Forestry (SUNY-ESF) has been named a winner in this year’s “JUMP into STEM” competition, an online building science program sponsored by the U.S. Department…

US Army Awards Meritorious Civilian Service Medal to Professor Mark Glauser

Mark Glauser, professor of mechanical and aerospace engineering in the College of Engineering and Computer Science, has been awarded a Meritorious Civilian Service Medal by the U.S. Army for his work with the Army Science Board. The board provides independent…

Honeywell and Syracuse University Establish Research Partnership to Develop Next-Generation Air Quality Technology

Honeywell and Syracuse University have established a research partnership to fund research on emerging indoor air quality technologies. The partnership will include the naming of a Honeywell Indoor Air Quality Laboratory at the College of Engineering and Computer Science, which…

Aerospace Engineering Alumni Profile: George Kirby ’92

Great technology requires an equally impressive business plan supporting it. The goal is to have a company led by someone who understands what makes the company innovative and also the business and analytical skill to grow it into an industry…

Keeping SARS2 Out of the Cell

As vaccines are distributed worldwide to fight the pandemic, important research at Syracuse University may uncover ways to block it and similar viruses in the future. Alison Patteson, assistant professor of physics, and Jennifer Schwarz, associate professor of physics, recently…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.