Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Professor Qin Collaborates with MIT to Study Fatigue Resistant Hydrogels

Tuesday, March 10, 2020, By Alex Dunbar
Share
BioInspired

For years, scientists have been interested in the potential of hydrogels in biomedical and engineering applications. Hydrogels often contain more than 90 percent water and a small percentage of synthetic polymer and are used in a variety of uses from medical electrodes, tissue engineering and dressings for hard to heal wounds.

“It is an interesting material since it is synthetic but can be bio-compatible since it is mostly water,” says Zhao Qin, assistant professor of civil and environmental engineering in the College of Engineering and Computer Science. “In particular, hydrogels are attractive for biomedical applications.”

While the high percentage of water helps make hydrogels biocompatible, the small amount of synthetic polymer means it is not very strong.

Zhao Qin

While working at the Massachusetts Institute of Technology (MIT), Qin connected with a research team that found that when they cooled a certain hydrogel to negative 20 degrees and heated it back to room temperature, the hydrogel became stronger. That team asked Qin to help with a key question: why does this material become so tough when it experiences the annealing process?

Qin joined the research collaboration to work on the modeling and theoretical calculation that could explain the way the hydrogel responded. He developed a full atomistic model to simulate the behavior of the materials. This model shows that the unwinding process of the crystal domains, which form during the annealing process of the hydrogel, dissipates much more energy than breaking the polymer chains, effectively making the material much tougher. This modeling tool could also be applied to other synthetic polymer structures to study how they would respond to different conditions.

“That’s something I want to study more in the future,” said Qin.

The research by Qin and his MIT colleagues Ji Liu, Shaoting Lin, Xinyue Liu, Yueying Yang, Jianfeng Zang and Xuanhe Zhao on “Fatigue-resistant adhesion of hydrogels” was published in the Nature Communications journal in February. Qin sees their work as a significant step forward for future hydrogel applications.

“Patients who might need a metal implant may face inflammation and corrosion issues,” says Qin. “Improved hydrogels could coat implants to make them more compatible and last for a longer time.”

Qin has joined the BioInspired Institute and is looking forward to collaborating with researchers from mechanical engineering, biomedical engineering, chemical engineering, physics, biology and other programs on the Syracuse University campus.

“I think these kinds of studies need interdisciplinary collaborations like these unique opportunities I have at Syracuse,” says Qin.

  • Author

Alex Dunbar

  • Recent
  • Future of News Production the Focus of NSF Planning Grant
    Thursday, January 21, 2021, By Wendy S. Loughlin
  • College of Law Adds Vincent H. Cohen ’92, L’95 to Board of Advisors
    Wednesday, January 20, 2021, By Martin Walls
  • Students Invited to Network and Skill-Build with Alumni
    Wednesday, January 20, 2021, By Gabrielle Lake
  • ‘Confronting ‘Who We Are”
    Tuesday, January 19, 2021, By News Staff
  • Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado
    Tuesday, January 19, 2021, By Dan Bernardi

More In STEM

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

$1.5 Million NIH Grant Funds ALS-Linked Research

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.