Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Swimming in a Sea of Neutrinos: Ph.D. Candidate Avinay Bhat Discusses His Research Into the Universe’s Smallest, Most Elusive Particles

Thursday, April 11, 2019, By Rob Enslin
Share
College of Arts and SciencesParticle PhysicsPhysics
young man wearing glasses

Avinay Bhat

Ph.D. candidate Avinay Bhat studies neutrinos—tiny, elusive particles that hold clues about the origin of the Universe. As a member of the High-Energy Physics (HEP) research group, he also builds components for a major experiment at Fermilab, a U.S. Department of Energy physics lab near Chicago.

“The components are for the Short-Baseline Near Detector [SBND], one of three particle detectors in Fermilab’s Short-Baseline [SBN] Program,” says Bhat, who has worked at Fermilab since November.

SBN focuses on neutrino oscillation, the process by which neutrinos change types, or flavors, as they hurtle through space and matter close to the speed of light.

Neutrinos come in three flavors, but SBN is searching for evidence of a fourth, known as the sterile neutrino. “Proving its existence would change the way we look at elementary physics,” says Bhat, adding that sterile neutrinos do not emit light or energy.

The College of Arts and Sciences recently spoke with Bhat about his innovative work in the Department of Physics.

I’m told that massive stars do not go gently into that good night—that they explode in a supernova, whose energy is carried away by a burst of neutrinos.
These explosions are called core-collapse supernovae, which give birth to neutron stars and black holes. I study neutrinos from these events.

Interesting. 
Due to their low energies, supernova neutrino interactions are difficult to reconstruct in MicroBooNE, where I do physics analysis….“MicroBooNE” is short for “Micro Booster Neutrino Experiment,” a multinational project in which hundreds of scientists study neutrino interactions.

Say more about core-collapse.
The core of a giant collapsing star is incredibly dense. When energy from a star’s nuclear reaction cannot hold its mass, gravity causes the outer layers of the star to fall inward. Thus, the core experiences a collapse.

During the collapse, almost 99 percent of the star’s binding energy is released in the form of neutrinos, which travel in all flavors and in all directions.

panoramic view of building and lake

Fermilab, outside of Chicago (Photo courtesy of Reidar Hahn/Fermilab)

And you detect these neutrinos in MicroBooNE—
The neutrinos arrive in MicroBooNE before the light [from the core-collapse supernova] reaches telescopes on Earth. Therefore, we can tell astronomers where to point their telescopes in the sky, in time to observe a supernova explosion.

What else do you do at Fermilab?
In addition to MicroBooNE physics analysis, I do SBND hardware installation. Both projects fall under the realm of experimental neutrino physics.

Would you elaborate?
Because neutrinos have no charge and very little mass, they rarely interact with other particles. In fact, most of them pass through Earth undetected.

Neutrinos occasionally collide with atoms. When that happens, we study their interactions to learn more about the properties of neutrinos and their role in the Universe.

With SBND, [postdoc] Pip Hamilton and I have been working on the APA wiring effort.

For those keeping score, an APA [anode plane assembly] is a large, rectangular frame on a liquid-argon particular detector. Each APA contains nearly 15 miles of delicate wire, which records signals created by neutrino collisions.
Right. Pip and I spent most of last year at the Wright Lab [at Yale] doing wiring. In November, we finished our second APA and shipped it to Fermilab.

Have you always liked detector design and development?
While I was working on my master’s degree, I was involved with a semester-long project at INO [the India-Based Neutrino Observatory]. It was there I learned about basic neutrino physics and particle detection, using various detectors. For these reasons, I chose to focus on neutrinos at Syracuse.

Two men working on a large device

Posdoc Pip Hamilton (foreground) and Bhat work on part of an anode plane assembly, or APA, at Yale University.

What else should we know about neutrinos?
After photons, they are the most abundant particles in the Universe. We, in fact, swim in a sea of neutrinos.

Not long ago, the Standard Model [a theory describing how particles and forces relate to one another] determined that neutrinos were massless. Now we know that they not only have mass, but also change “flavor” from one type of neutrino to another. Neutrinos have a tendency not to interact with matter.

What’s your goal with this research?
To answer some big questions. I want to know what role neutrinos play in supernova explosions….Can supernova neutrinos help verify the existing neutrino oscillation and core collapse models? What can they tell us about neutrino mass hierarchy?

Do you foresee any applications?
Our knowledge of neutrinos is small, so the immediate focus is on basic research. As with most basic research, we have no idea where we will end up.

An analogy is the discovery of the electron in 1897. Back then, nobody knew that the flow of electrons created electricity—knowledge that has changed the course of history. Likewise, neutrino detectors currently monitor nuclear proliferation activity. As we learn more [about neutrinos], the possible applications in science and technology are far-reaching.

How do you like working with Associate Professor Mitch Soderberg?
His involvement with multiple neutrino experiments has enabled me to get much-needed experience in both hardware installation and physics analysis. Mitch is supportive and understanding, and his expertise has contributed greatly to my growth as a doctoral student. We’re already thinking about postdoc interviews.

  • Author

Rob Enslin

  • Recent
  • Most Read
  • Related
  • Statement from Syracuse University Regarding Closure of Crouse-Hinds Hall on Thursday, Dec. 5
    Thursday, December 5, 2019, By News Staff
  • 2020 SyracuseCoE Faculty Fellows Request for Proposals Now Open
    Thursday, December 5, 2019, By Kerrie Marshall
  • From ‘Justice for Jenny’ to Justice for All: Burton Blatt Institute Redefines ‘Supported Decision Making’
    Thursday, December 5, 2019, By News Staff
  • Registration Open for WorkLife Webinar for Faculty and Staff
    Tuesday, December 3, 2019, By News Staff
  • Center for Learning and Student Success Offering Additional Academic Support Programming During This Final Week of Classes
    Tuesday, December 3, 2019, By News Staff
  • SU in the News: Tuesday, July 3
    Tuesday, July 3, 2012, By News Staff
  • Syracuse University Permanently Expels Theta Tau Chapter
    Saturday, April 21, 2018, By News Staff
  • Seven Syracuse Alumni Named to Forbes 30 Under 30 Lists
    Thursday, January 5, 2017, By John Boccacino
  • Syracuse University Announces $118 Million Investment to Create a New Stadium Experience
    Monday, May 14, 2018, By News Staff
  • 100 Years after WWI: The Lasting Impacts of the Great War
    Monday, July 28, 2014, By Kathleen Haley
  • Skaneateles to Host International Physics Conference July 14-19
    Tuesday, July 1, 2014, By Rob Enslin
  • Syracuse Symposium to Recognize Careers of Professors Wadley, Gold Feb. 26
    Monday, February 18, 2019, By Rob Enslin
  • Hush, Little Baby: Mother Right Whales ‘Whisper’ to Calves
    Thursday, October 10, 2019, By Diana Napolitano
  • Lewandowski Appointed Interim Chair of Psychology Department
    Monday, January 25, 2016, By Cyndi Moritz
  • Arts and Sciences Appoints New Director of Graduate, Undergraduate Recruitment
    Monday, June 3, 2019, By Rob Enslin

More In STEM

2020 SyracuseCoE Faculty Fellows Request for Proposals Now Open

SyracuseCoE is accepting applications for the 2020 Faculty Fellows program, which provides up to $20,000 in seed funding for research in SyracuseCoE’s core technical areas of clean and renewable energy, indoor environmental quality and water resources. Select previous projects are highlighted…

ECS Faculty Awarded $1.4 Million from Energy Department to Advance Building Energy Modeling

Two faculty members in the College of Engineering and Computer Science (ECS) will extend their collaborations to develop an innovative system that improves energy modeling of existing buildings using “aerial intelligence” acquired by drones. Senem Velipasalar, associate professor of electrical…

Biology Graduate Student Receives National Defense Science and Engineering Graduate Fellowship

Julia Zeh is a Ph.D. student in the Bioacoustics and Behavioral Ecology Lab under biology Associate Professor Susan Parks, working on a project that ultimately will contribute to the conservation of endangered whales. Her interest in ecology and animal behavior…

Forensics and National Security Sciences Institute Develops DNA Tool

DNA is everywhere—not just in bodily fluids, such as blood or saliva, but also in traces left by the touch of a finger. If more than one person has been sitting at the same table, for example, traces of each…

Information Technology Services Takes Center Stage at NetApp Insight Conference

Thousands of information technology professionals gathered at the NetApp Insight Conference in Las Vegas last week to hear experts from such leading organizations as Centura Health, SAP, DreamWorks—and Syracuse University. Eric Sedore, associate chief information officer with Information Technology Services…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2019 Syracuse University News. All Rights Reserved.