Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded $1.2 Million NIH Grant to Enhance Protein Detection

Tuesday, September 11, 2018, By Rob Enslin
Share
BioInspiredCollege of Arts and SciencesPhysicsResearch and Creative

Professor Liviu Movileanu develops biosensors to identify proteins in leukemia, cancer

Liviu Movileanu

Liviu Movileanu

A physicist in the College of Arts and Sciences is using a major grant from the National Institutes of Health (NIH) to support ongoing research into protein detection.

Liviu Movileanu, professor of physics, is the recipient of a four-year, $1.2 million Research Project Grant (R01) from NIH’s National Institute of General Medical Sciences (NIGMS). The award supports the development of highly sensitive biosensors to identify proteins in aggressive lymphocytic leukemia and various cancers.

The project involves researchers from Syracuse University and SUNY Upstate Medical University, the latter of whom are led by Michael Cosgrove G’93, G’98, associate professor of biochemistry and molecular biology.

“Our mission is to design, create and optimize novel biophysical tools that detect tiny amounts of biological molecules,” says Movileanu, a member of the Biophysics and Biomaterials research group in the Department of Physics. “We will devise protein-based detectors that benefit molecular biomedical diagnostics.”

Biomedical diagnostics is a rapidly evolving field involving the screening, detection, diagnosis, prognosis and monitoring of disease at various stages of development.

This work involves physics measurements, device engineering principles and other biophysical approaches that enable scientists to observe mechanistic processes at the single-molecule level.

Movileanu credits the Human Genome Project for providing new ways to identify proteins that play critical regulatory roles in cells. Studying how and why proteins interact with one another is part of a burgeoning area called interactomics.

“This work impacts our fundamental understanding of disease cause and its progression,” says Movileanu, who came to Syracuse in 2004, after a postdoctoral stint at Texas A&M University. “If we know how individual parts of a cell function, we can then figure out why a cell deviates from normal functionality toward a tumor-like, oncogenic state.”

A 3-D illustration of cancer cells (Courtesy of Design_Cells/Shutterstock.com)

A 3-D illustration of cancer cells (Courtesy of Design_Cells/Shutterstock.com)

Movileanu uses nanopore technology to identify and validate proteins. This involves sending an electric current across an artificially engineered hole in a cell membrane called a nanopore. When individual proteins move near or through a nanopore, the current changes in intensity.

“A nanopore is a robust, proteinaceous scaffold that can be modified at an atomic level and integrated into scalable electrical devices,” says Movileanu, an experimentalist who earned a Ph.D. from the University of Bucharest (Romania).

Looking ahead, his team plans to tether specific protein receptors to nanopores in complex biofluid samples, such as blood, a cell lysate or a biopsy. Movileanu is excited about this work because each protein receptor-protein target interaction produces a unique electrical signal.

Moreover, the biological data gleaned from a single sample can be immense. “Nanostructures permit us to observe complex biochemical events in a quantitative manner, leading to a solid assessment about a particular sample,” he adds.

Movileanu applauds NIH’s commitment to new biomedical technologies, enabling doctors to identify diseases quicker, more accurately and more affordably than before.

“This could be the start of a new generation of research and diagnostic tools, exploring the molecular basis of recognition events in a sensitive, specific and quantitative fashion—something heretofore impossible with traditional spectroscopic and calorimetric measurements,” he continues.

NIGMS is the principal medical research agency of the U.S. government. One of NIH’s 27 centers and institutes, NIGMS supports basic research into biological processes and lays the foundation for advances in disease diagnosis, treatment and prevention. NIGMS-funded scientists investigate how living systems work at a range of levels, from molecules and cells to tissues and organs, in research organisms, humans and populations.

  • Author

Rob Enslin

  • Recent
  • Men’s Soccer Team Gives Back to Syracuse Community for Season of Support
    Friday, June 2, 2023, By Kathleen Haley
  • June 30 Deadline Set for Fiscal 2023 Year End Business
    Wednesday, May 31, 2023, By News Staff
  • DPS Accepting Sign-Ups for R.A.D. Summer Session
    Wednesday, May 31, 2023, By Alex Haessig
  • Syracuse Stage Adds 2 Musicals to 50th Anniversary Season
    Wednesday, May 31, 2023, By Joanna Penalva
  • Supporting, Advocating for Trans Youth Will Help Them Thrive As Adults
    Friday, May 26, 2023, By Daryl Lovell

More In STEM

Mechanical Engineering Student Ruohan Xu Receives Norma Slepecky Undergraduate Research Prize

Recent mechanical engineering and applied mathematics graduate Ruohan Xu ’23, G’24, has received the Norma Slepecky Undergraduate Prize for his research activities. Xu received the award from the Women in Science and Engineering Review Committee and was nominated by his…

Civil and Environmental Engineering Professor Sam Clemence to Receive Deep Foundations Institute Legends Award

The Deep Foundations Institute (DFI) and the DFI Educational Trust Legends Committee has chosen Civil and Environmental Engineering Professor Sam Clemence as a recipient of one of the DFI Legends Awards for 2023. This award was established to honor practitioners…

Physics and Mathematics Major Chance Baggett ’24 Named an Astronaut Scholar

Chance Baggett, a rising senior in the College of Arts and Sciences studying physics and mathematics and a member of the Renée Crown University Honors Program, has been named a 2023-24 Astronaut Scholar by the Astronaut Scholarship Foundation (ASF). Founded…

Aphasia Research Lab Seeks Participants for Stroke Treatment Study

Strokes affect nearly 800,000 individuals in the United States each year. To bring attention to the risk factors for strokes and how to prevent them, the National Stroke Association holds Stroke Awareness Month during the month of May. Those who…

Syracuse Center of Excellence Announces New Co-Chairs of Industry Partners Council

The Syracuse Center of Excellence in Environmental and Energy Systems at Syracuse University (SyracuseCoE) is proud to announce the appointment of Yu Chen and Scott MacBain from Carrier Corporation as the new co-chairs of the SyracuseCoE Industry Partner Council. In…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.