Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Chemists Develop Tools to Reduce Pesticide Impact

Monday, August 27, 2018, By Rob Enslin
Share
College of Arts and SciencesfacultyResearch and Creative

Researchers in the College of Arts and Sciences (A&S) have developed tools to break down pesticides in the environment.

Ivan Korendovych

Ivan Korendovych, associate professor of chemistry, is the recipient of a $107,000 grant award from CRDF Global, supporting the study of catalytic amyloids—aggregates of peptides that self-assemble into small, slender fibers—in chemical transformations. The award stems from a related cover story that he co-authored for ACS Catalysis (American Chemical Society, 2017).

Korendovych is a renowned protein engineer who works at the nexus of biology, chemistry and physics.

“This grant enables us to explore various applications of catalytic amyloids,” says Korendovych, also is a research ambassador for the German Academic Exchange Service, which promotes teaching and research collaborations between U.S. and German universities. “We are particularly interested in showing how catalytic amyloids interact with paraoxon, a highly toxic organophosphate pesticide [OP].”

Korendovych studies the formation of short peptides, which give rise to catalytic amyloids. The latter are small, copper-laced molecules that are extremely homogenous and function under high pressure. They also mix with other peptides to catalyze various reactions.

magazine cover with dominos

Korendovych’s grant stems from a related article he co-wrote for ACS Catalysis.

Under Korendovych’s watchful eye, researchers in A&S study how catalytic amyloids mitigate the effects of paraoxon, an OP responsible for an estimated three million poisonings a year.

The molecular similarity of paraoxon to toxic nerve agents also makes it a useful test system for chemical weapons remediation.

“Catalytic amyloids offer several practical advantages, such as robustness, low cost and ease of modification,” says Korendovych, a former Humboldt Fellow who also teaches at SUNY Upstate Medical University. “We hope to find out if they simultaneously promote multiple reactions at the same time.”

Already, he and his colleagues have demonstrated that catalytic amyloids facilitate the hydrolysis of paraoxon by several thousand-fold.

Paraoxon is a pesticide used in agriculture, homes, gardens and veterinary practices. It is especially harmful to insects and other animals, including birds, amphibians and mammals.

“Whether paraoxon is absorbed through the skin or gut, or by inhalation, it is very toxic,” Korendovych says. “Hydrolysis [the chemical breakdown of a compound, due to its reaction to water] is the best chemical process for OP detoxification. Various metal ions, notably copper, facilitate the process, while mitigating paraoxon’s lasting effects.”

Korendovych also has engineered catalytic amyloids into chemical flow systems—devices that, as the name suggests, work on a continuously flowing stream, rather than in batch production.

“We created a flow system that not only facilitated paraoxon hydrolysis in a continuous manner, but also promoted easy catalyst separation and recycling,” he beams. “The high hydrolytic activity of catalytic amyloids, combined with their ability to active oxygen, prompted us to wonder if they promote multiple reactions at once.”

Korendovych’s team has showed, for the first time, that catalytic amyloids can facilitate multiple chemical transformations at once. The process involves a cascade of steps, in which a starting material evolves into a complex product.

They found that the unique architecture of copper-containing amyloids provides an “additional kinetic advantage” to hydrolysis and oxidation. “This kind of work—developing efficient catalysts for chemical transformations—is the ‘Holy Grail’ of chemistry,” Korendovych says.

Karin Ruhlandt, dean of A&S and a Distinguished Professor of Chemistry, helped bring Korendovych to Syracuse in 2011. Previously a postdoc at the Perelman School of Medicine at the University of Pennsylvania, he earned a Ph.D. in chemistry from Tufts University.

CRDF Global is an independent nonprofit organization that promotes international scientific and technical collaboration through grants, technical resources, training and services. Most of CRDF’s work involves matters of safety, security and sustainability.

 

  • Author

Rob Enslin

  • Recent
  • Maxwell Professor Kristy Buzard Explores Gender Disparities in Economics
    Tuesday, October 3, 2023, By News Staff
  • ‘Norton Guide to Equity-Minded Teaching’ Co-Author to Give Public Talk and Faculty Workshop Oct. 11-12
    Tuesday, October 3, 2023, By News Staff
  • What’s Happening in CNY: Your Fun Fall Activity Guide
    Tuesday, October 3, 2023, By Christine Weber
  • Syracuse University Press Participating in Path to Open Program
    Friday, September 29, 2023, By Cristina Hatem
  • A&S Chemistry Professor Receives Award From the American Chemical Society
    Friday, September 29, 2023, By News Staff

More In STEM

A&S Chemistry Professor Receives Award From the American Chemical Society

Robert Doyle, Dean’s Professor of Chemistry in the College of Arts and Sciences (A&S) and associate professor of pharmacology at SUNY Upstate Medical University, received the 2022 American Chemical Society Central New York Section Award in the field of chemistry…

Syracuse University Announces the Opening of the Center for Gravitational Wave Astronomy and Astrophysics

As Albert Einstein predicted in his theory of relativity more than one hundred years ago, gravitational waves have been rippling through the fabric of space-time since the dawn of the cosmos. Only in the past decade have scientists observed actual…

iSchool Professors, Students Honored With ALISE Awards

Two students and three professors from the School of Information Studies (iSchool) were recently honored with prestigious awards from the Association for Library and Information Science Education (ALISE). Assistant Professor LaVerne Gray was awarded the Norman Horrocks Leadership Award for demonstrating outstanding leadership…

Ian Hosein Awarded New Patent For Process that Generates Energy from Saltwater

The lack of access to clean drinking water impacts billions worldwide. With an estimated 46% of the global population affected, underdeveloped communities don’t have the means to utilize efficient technology for water purification. As the percentage of those affected grows,…

Setting the Agenda in Biology Research: 2 Professors Join NIH Peer Review Committees

The Center for Scientific Review (CSR) is known as the “gateway” for National Institutes of Health (NIH) grant applications. Expert peer review groups—also called study sections—formed by the CSR assess more than 75% of the thousands of research grant applications…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.