Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Scientists Examine Link Between Surface-Water Salinity, Climate Change in Central New York

Friday, February 23, 2018, By Rob Enslin
Share
Climate ChangeCollege of Arts and Sciencesenvironment
woman standing in swamp

Kristina Gutchess

The interplay between surface-water salinity and climate change in Central New York is the subject of a recent paper by researchers in the College of Arts and Sciences.

Kristina Gutchess, a Ph.D. candidate in Earth Sciences, is the lead author of an article in the prestigious journal Environmental Science and Technology (ACS Publications). Her co-authors at Syracuse include Laura Lautz, the Jesse Page Heroy Professor and chair of Earth sciences, and Christa Kelleher, assistant professor of Earth sciences.

Another co-author is Gutchess’ Ph.D. supervisor, Associate Professor Zunli Lu.

Rounding out the group are Li Jin G’08, associate professor of geology at SUNY Cortland; José L. J. Ledesma, a postdoctoral researcher of aquatic sciences and assessment at the Swedish University of Agricultural Sciences; and Jill Crossman, assistant professor of Earth and environmental sciences at the University of Windsor (Ontario).

The paper draws on the group’s study of the impact of de-icing salt from Interstate 81 and other surrounding roads and highways on the Tioughnioga River watershed. Gutchess says their findings make her “cautiously optimistic” about the watershed’s future surface-water chloride concentrations.

“The long-term application of road salts has led to a rise in the river’s salinity level,” says Gutchess, who studies processes affecting the quality of surface water and groundwater. “While various models have been used to assess potential future impacts of continued de-icing practices, they have not incorporated different climate scenarios, which are projected to impact hydrogeology in the 21st century.”

Gutchess’ team combined various computational approaches with rigorous fieldwork and laboratory analysis to simulate surface-water chloride concentrations in the Tioughnioga—a large, deep, 34-mile tributary of the Chenango River, flowing through Cortland and Broome counties.

Central to their experiment was INCA (short for “INtegrated CAtchment”), a semi-distributed catchment-modeling platform that assesses environmental-change issues. Gutchess calibrated the model for a historical, or baseline, period (1961-90), and used the results to make projections for three 30-year intervals: 2010-39, 2040-69 and 2070-99.

Based on the model’s projections, the salinity of the Tioughnioga’s east and west branches will start decreasing in 20-30 years. “A gradual warming trend between 2040 and 2099 will lead to reductions in snowfall and associated salt applications, causing [the river’s] salinity to drop. By 2100, surface-water chloride concentrations should be below 1960s values,” Gutchess says.

This is potentially big news for a part of the country that has experienced rising surface-water chloride concentrations since the 1950s, when road salting began.

Salt, or sodium chloride, is the most commonly used de-icing chemical in the country, spread at a rate of more than 10 million tons a year.

In New York State, a typical wintertime event requires 90-450 pounds of salt per lane-mile. Vehicle traffic picks up about 10 percent of the residue; the rest enters adjacent water catchments in the form of runoff, jeopardizing terrestrial ecosystems and drinking water resources.

Gutchess’ hydrogeological study is one of only a few combining long-term climate variability and salinity management. The INCA model framework enabled her team to assess stream response under 16 different future scenarios, taking into account climate, land use and snow management.

“INCA originally was developed to assess sources of nitrogen in catchments in a single-stem main river,” Jin says. “Here, we modified the model to incorporate a new multi-branched structure, enabling us to simulate daily estimates of in-stream concentrations of chloride. We also allowed for differences in salting practices between rural and urban areas.”

According to INCA, road salt accounts for more than 87 percent of Tioughnioga’s salinity. Current de-icing practices, combined with increased urbanization, will likely add to its salinity, but only for a while, thanks in part to the changing climate.

According to Lu, the study suggests that climatic impacts are not always negative in a specific region: “It is important to understand the nuances of climate change at various time and geographic scales. Ultimately, this project will help us manage our resources more effectively, as we adapt to future changes.”

With a wink and a nod, he adds, “At the same time, we should not make blanket statements about climate change. No one is exempt from its effects, pro or con.”

Gutchess is a member of EMPOWER, a water-energy graduate-training program at Syracuse that is sponsored by the National Science Foundation and directed by Lautz. Additional support for Gutchess’ research comes from the University’s new Campus as a Laboratory for Sustainability program. Upon graduation in May, she will begin postdoctoral research at Yale.

About Syracuse University

Founded in 1870, Syracuse University is a private international research university dedicated to advancing knowledge and fostering student success through teaching excellence, rigorous scholarship and interdisciplinary research. Comprising 11 academic schools and colleges, the University has a long legacy of excellence in the liberal arts, sciences and professional disciplines that prepares students for the complex challenges and emerging opportunities of a rapidly changing world. Students enjoy the resources of a 270-acre main campus and extended campus venues in major national metropolitan hubs and across three continents. Syracuse’s student body is among the most diverse for an institution of its kind across multiple dimensions, and students typically represent all 50 states and more than 100 countries. Syracuse also has a long legacy of supporting veterans and is home to the nationally recognized Institute for Veterans and Military Families, the first university-based institute in the U.S. focused on addressing the unique needs of veterans and their families.

  • Author

Rob Enslin

  • Recent
  • Syracuse University Ranked in the Top 25 for Best Online Graduate Information Technology Programs by U.S. News & World Report
    Tuesday, January 26, 2021, By News Staff
  • WAER 88.3 FM Welcomes New Sports Director
    Tuesday, January 26, 2021, By Mary Kate Intaglietta
  • The State of the Immigration Courts
    Tuesday, January 26, 2021, By News Staff
  • Athlete, Activist Maya Moore Joins the Martin Luther King Jr. Virtual Event Series Jan. 27
    Tuesday, January 26, 2021, By News Staff
  • Health Promotion Advocate and Alumnus Sidney Lerner ’53 Remembered
    Tuesday, January 26, 2021, By News Staff

More In STEM

Syracuse University Ranked in the Top 25 for Best Online Graduate Information Technology Programs by U.S. News & World Report

Syracuse University’s School of Information Studies (iSchool) and the College of Engineering and Computer Science (ECS) have been recognized as No. 11 for Best Online Graduate Information Technology Programs for Veterans and No. 25 for Best Online Graduate Information Technology Programs by U.S. News…

Data Privacy Day 2021: Is Your Personal Information Safe?

Jan. 28 is Data Privacy Day, an annual event to create and raise awareness about how personal information is collected, secured and shared in the growing digital world. A 2019 Pew Research Center report found a majority of Americans were…

Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research

Electrical engineering and computer science (EECS) Professor Farzana Rahman received a 2020 Google exploreCSR award to fund the development of an undergraduate student engagement workshop program, Research Exposure in Socially Relevant Computing (RESORC). The RESORC program will provide research opportunities…

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.