Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

What a Potato Clock Can Teach Us About Fighting Disease

Thursday, July 7, 2016, By Matt Wheeler
Share
research
A potato clock

A potato clock

Did you ever make a potato clock as a kid? You know, that science experiment where you jam copper and zinc wires into potatoes and connect them with miniature jumper cables to power a clock?

Did you know that the reaction that makes elementary school potato clocks tick could also fight infection and disease?

In published research, Professor Jeremy Gilbert found that when titanium and magnesium particles are galvanically coupled, like zinc and copper in a potato clock, an electrochemical reaction develops that produces a cell-killing effect. If applied to medical treatments, it may lead to treatment options for all kinds of infections—from superbugs to cancerous tumors.

“What makes the potato clock work is the large voltage difference between the copper and zinc. It causes a current to follow through the potatoes to drive the clock. There’s a voltage difference between the two metals that makes it possible. The bigger the difference, the stronger the reaction. Magnesium and titanium have nearly a two-volt difference. It’s a very strong coupling and it produces a powerful effect,” says Gilbert.

That powerful effect—a reductive electrochemical reaction that generates reactive oxygen intermediates—kills cells in close proximity.

Gilbert, an expert in biological implants like hip replacements, believes that one way these findings could be put to use in infection prevention for titanium implants. Infections that take hold on the surface of implants are notoriously challenging to defeat. They withstand even the most powerful antibiotics. By adding magnesium to the titanium surface of an implant, the implant itself is given the ability to kill bacteria before they are able to harm the patient.

This research also reveals an application for killing cancer cells. Our body normally has mechanisms to stop cells from dividing uncontrollably, but when it fails to do so, cancer develops. The negative voltages that Gilbert and his fellow researchers apply induce cellular apoptosis, or cell death, so it may be a way of killing cancer cells that don’t get the message to die off naturally.

This fundamental breakthrough provides a foundation for scientists to build upon and is a strong example of how science that can be understood for something as simple as a potato clock can be used to blaze a new trail in other areas.

Gilbert says, “It’s a novel idea to use an electrochemical process to adapt implants to control infections or treat other conditions. These findings will be the underpinning for new ideas in healthcare.”

  • Author

Matt Wheeler

  • Recent
  • Funding Expands for Newhouse Professors’ Work on Technology to Combat Fake News
    Wednesday, May 18, 2022, By Wendy S. Loughlin
  • Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives
    Tuesday, May 17, 2022, By News Staff
  • As the School of Education’s Italy Program Returns, Sara Jo Soldovieri ’18, G’19 Reflects on Its Influence
    Tuesday, May 17, 2022, By Martin Walls
  • Center for Fellowship and Scholarship Advising Team Helps Match Students With Unique Experiences That Enhance Their Studies
    Tuesday, May 17, 2022, By Jen Maser
  • COVID-19 Update: Public Health Protocols for Summer 2022
    Tuesday, May 17, 2022, By News Staff

More In STEM

Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives

In 1948, Professor James Hope Birnie became Syracuse University’s first African American faculty member in biology, teaching here until 1951. He was also one of its first biology faculty members to be supported by the National Institutes of Health (NIH)….

Black Hole Image Shows Einstein Was Right, Once Again

Today a team of astronomers announced they successfully captured the first direct image of the black hole at the center of the Milky Way galaxy. Duncan Brown is the Charles Brightman Endowed Professor of Physics at Syracuse University’s College of…

Biomedical and Chemical Engineering Professor’s Research Team Receives Multiple Awards at Society for Biomaterials Conference

Biomedical and chemical engineering Professor Mary Beth Monroe attended the Society for Biomaterials (SFB) 2022 meeting in Baltimore, Maryland, with Ph.D. students Anand Vakil, Henry Beaman, Changling Du and Maryam Ramezani, master’s student Natalie Petryk ’21, G’22 and undergraduate students Caitlyn…

Viewing a Microcosm Through a Physics Lens

“What can physics offer biology?” This was how Alison Patteson, assistant professor in the College of Arts and Sciences’ physics department and a faculty member in the BioInspired Institute, began the explanation of why her physics lab was studying bacteria. In…

University’s Top Putnam Math Competition Finisher Awarded Inaugural Erdős Prize

Junior Connor Ritchie has won the Department of Mathematics’ inaugural Erdős Prize for being Syracuse University’s top finisher in the William Lowell Putnam Mathematical Competition. The Putnam contest is the preeminent mathematics competition for undergraduate college students in the United States and Canada,…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.