Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

What a Potato Clock Can Teach Us About Fighting Disease

Thursday, July 7, 2016, By Matt Wheeler
Share
Research and Creative
A potato clock

A potato clock

Did you ever make a potato clock as a kid? You know, that science experiment where you jam copper and zinc wires into potatoes and connect them with miniature jumper cables to power a clock?

Did you know that the reaction that makes elementary school potato clocks tick could also fight infection and disease?

In published research, Professor Jeremy Gilbert found that when titanium and magnesium particles are galvanically coupled, like zinc and copper in a potato clock, an electrochemical reaction develops that produces a cell-killing effect. If applied to medical treatments, it may lead to treatment options for all kinds of infections—from superbugs to cancerous tumors.

“What makes the potato clock work is the large voltage difference between the copper and zinc. It causes a current to follow through the potatoes to drive the clock. There’s a voltage difference between the two metals that makes it possible. The bigger the difference, the stronger the reaction. Magnesium and titanium have nearly a two-volt difference. It’s a very strong coupling and it produces a powerful effect,” says Gilbert.

That powerful effect—a reductive electrochemical reaction that generates reactive oxygen intermediates—kills cells in close proximity.

Gilbert, an expert in biological implants like hip replacements, believes that one way these findings could be put to use in infection prevention for titanium implants. Infections that take hold on the surface of implants are notoriously challenging to defeat. They withstand even the most powerful antibiotics. By adding magnesium to the titanium surface of an implant, the implant itself is given the ability to kill bacteria before they are able to harm the patient.

This research also reveals an application for killing cancer cells. Our body normally has mechanisms to stop cells from dividing uncontrollably, but when it fails to do so, cancer develops. The negative voltages that Gilbert and his fellow researchers apply induce cellular apoptosis, or cell death, so it may be a way of killing cancer cells that don’t get the message to die off naturally.

This fundamental breakthrough provides a foundation for scientists to build upon and is a strong example of how science that can be understood for something as simple as a potato clock can be used to blaze a new trail in other areas.

Gilbert says, “It’s a novel idea to use an electrochemical process to adapt implants to control infections or treat other conditions. These findings will be the underpinning for new ideas in healthcare.”

  • Author

Matt Wheeler

  • Recent
  • Syracuse University Press Participating in Path to Open Program
    Friday, September 29, 2023, By Cristina Hatem
  • A&S Chemistry Professor Receives Award From the American Chemical Society
    Friday, September 29, 2023, By News Staff
  • ‘Guys and Dolls’ opens Syracuse University Department of Drama 2023/24 Season
    Friday, September 29, 2023, By Joanna Penalva
  • Libraries Add MindSpa Wellness Rooms
    Friday, September 29, 2023, By Cristina Hatem
  • Syracuse University Announces the Opening of the Center for Gravitational Wave Astronomy and Astrophysics
    Friday, September 29, 2023, By Kerrie Marshall

More In STEM

A&S Chemistry Professor Receives Award From the American Chemical Society

Robert Doyle, Dean’s Professor of Chemistry in the College of Arts and Sciences (A&S) and associate professor of pharmacology at SUNY Upstate Medical University, received the 2022 American Chemical Society Central New York Section Award in the field of chemistry…

Syracuse University Announces the Opening of the Center for Gravitational Wave Astronomy and Astrophysics

As Albert Einstein predicted in his theory of relativity more than one hundred years ago, gravitational waves have been rippling through the fabric of space-time since the dawn of the cosmos. Only in the past decade have scientists observed actual…

iSchool Professors, Students Honored With ALISE Awards

Two students and three professors from the School of Information Studies (iSchool) were recently honored with prestigious awards from the Association for Library and Information Science Education (ALISE). Assistant Professor LaVerne Gray was awarded the Norman Horrocks Leadership Award for demonstrating outstanding leadership…

Ian Hosein Awarded New Patent For Process that Generates Energy from Saltwater

The lack of access to clean drinking water impacts billions worldwide. With an estimated 46% of the global population affected, underdeveloped communities don’t have the means to utilize efficient technology for water purification. As the percentage of those affected grows,…

Setting the Agenda in Biology Research: 2 Professors Join NIH Peer Review Committees

The Center for Scientific Review (CSR) is known as the “gateway” for National Institutes of Health (NIH) grant applications. Expert peer review groups—also called study sections—formed by the CSR assess more than 75% of the thousands of research grant applications…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.