Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded Simons Foundation Collaboration Grant

Tuesday, April 12, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has been awarded a collaborative grant from the Simons Foundation Mathematics and the Physical Sciences (MPS) division to study the glassy state of matter.

M. Lisa Manning

M. Lisa Manning

Associate Professor M. Lisa Manning is part of a $10 million multinational collaboration, based at The University of Chicago (UC). One of 13 principal investigators, she will receive $546,000, along with $2.5 million that will be shared with her colleagues, to underwrite costs such as computing facilities, conference travel and postdoctoral fellows.

Manning says the purpose of the research project is to “crack the glass problem”—specifically, to explain the nature of glass, a material with properties that seem to defy classification.

“The endeavor to understand the glassy state of matter forces us to consider the seemingly simple question: What is a solid?” says Manning, an expert in soft matter and biophysics. “In glass, the constituent molecules are all jumbled up like those in a fluid, and, yet, the material, as a whole, still behaves like a solid. We want to understand why.”

Such understanding is important for industrial applications, including the processing of pharmaceuticals and the transport and storage of agricultural products, and is at the core of theoretical statistical physics.

“Glass is a disordered solid stranded far from equilibrium,” Manning continues. “It inhabits a very complex energy landscape, and dealing with that complexity requires the invention of a new set of tools and concepts. The same theoretical tools will likely be useful for other complex problems, including some in biology and finance.”

Manning’s group is interested in how glasses form as a material is cooled, and how glasses deform and break under applied stress. Their research will build upon previous discoveries in her group that identify defects in disordered solids and connect sound modes in these solids to mathematical constructs called random matrices.

“Recent discoveries focusing on jamming at zero temperature, the mean-field theory of glasses in infinite dimension and the dynamics in a marginally stable landscape are converging to give us a deeper understanding of glassy solids,” Manning adds. “We think the field is ripe for a breakthrough that will allow us to develop a unified theory of structure and excitations in glassy matter, as well as a theory for the relaxation dynamics upon approaching the glass transition.”

glass renderings

Glasses are difficult to classify because their constituent particles are disorganized like those in a fluid (left panel), but they support forces and stresses like those in a solid (middle and right panels).

Renowned for her study of granular materials and glasses, Manning is traveling to Lyon, France, this summer to accept the prestigious Young Scientist Award from the Statistical Physics Commission of the International Union of Pure and Applied Physics. She is the first woman and first American to receive the award.

The Simons collaboration is directed by Sidney R. Nagel, UC’s Stein-Freiler Distinguished Service Professor of Physics. More information is available at http://scglass.uchicago.edu.

The Simons Foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences. The MPS division supports research in mathematics, theoretical physics, and theoretical computer science.

  • Author

Rob Enslin

  • Recent
  • Chancellor Syverud Addresses Athletics, Benefits, Sustainability at University Senate
    Wednesday, September 27, 2023, By News Staff
  • Setting the Agenda in Biology Research: 2 Professors Join NIH Peer Review Committees
    Wednesday, September 27, 2023, By News Staff
  • iSchool Student Selected for Highly Competitive Data Librarianship Internship
    Wednesday, September 27, 2023, By Anya Woods
  • Exploring the Existence of Life at 125 Degrees Fahrenheit
    Tuesday, September 26, 2023, By Dan Bernardi
  • How Climate Warming Could Disrupt a Deep-Rooted Relationship
    Tuesday, September 26, 2023, By Dan Bernardi

More In STEM

Setting the Agenda in Biology Research: 2 Professors Join NIH Peer Review Committees

The Center for Scientific Review (CSR) is known as the “gateway” for National Institutes of Health (NIH) grant applications. Expert peer review groups—also called study sections—formed by the CSR assess more than 75% of the thousands of research grant applications…

iSchool Student Selected for Highly Competitive Data Librarianship Internship

Katya Mueller, a student in the School of Information Studies’ master of library and information science (MLIS) program, was selected as a 2023 National Center for Data Services data librarianship internship participant. Mueller, who plans to graduate in spring 2024,…

Exploring the Existence of Life at 125 Degrees Fahrenheit

There are an estimated 8.7 million eukaryotic species on the planet. These are organisms whose cells contain a nucleus and other membrane-bound organelles. Although eukaryotes include the familiar animals and plants, these only represent two of the more than six…

How Climate Warming Could Disrupt a Deep-Rooted Relationship

Children are taught to leave wild mushrooms alone because of their potential to be poisonous. But trees on the other hand depend on fungi for their well-being. Look no further than ectomycorrhizal fungi, which are organisms that colonize the roots…

Turning Young Enthusiasts Into Scientific Researchers

Miguel Guzman ’24, a native of Lima, Peru, is a senior biotechnology major in the College of Arts and Sciences with an entrepreneurship and emerging enterprises minor in the Whitman School of Management. His research centers on developing bio-enabled protein…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.