Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

New Research Introduces ‘Pause Button’ for Boiling

Tuesday, February 23, 2016, By Matt Wheeler
Share
research
Using a focused laser beam, asdfasdfasdf

Using a focused laser beam, Shalabh Maroo’s group has managed to hit the pause button on the boiling process

Gather your patience and put the old “a watched pot never boils” saying to the test. The experience might rival watching paint dry, but of course the water will eventually begin to boil. When it does, you’ll see a flurry of bubbles form and quickly rise to the surface of the water. Once it kicks in, it builds at a furious pace and quickly creates a roiling cauldron on your stovetop. Time to add the pasta.

People have been boiling water to make dinner for ages, but it is also used in our refrigerators and even in the international space station as a method for cooling its systems. Ninety percent of all electricity in the United States is generated with steam turbines that require boiling to make the steam. With so many uses and over five decades of research, it is hard to believe that there are any stones left unturned in our understanding of boiling. Yet, as with all things, there is always room to learn more. The formation of bubbles in boiling is not completely understood.

The boiling process is largely driven by the dynamics of a very thin liquid film present at the base of each vapor bubble. Researchers have always found it challenging to study this area in the real world simply because it’s so hard to get a good look at. Bubbles form in unpredictable locations during boiling, and once they do they are fleeting—leaving the heated surface immediately.

A 3D schematic of a vapor bubble on a heated surface in a pool of liquid depicting the three-phase contact line

A 3D schematic of a vapor bubble on a heated surface in a pool of liquid depicting the three-phase contact line

Until now. Using a focused laser beam to essentially hit the pause button on boiling, Assistant Professor of Mechanical and Aerospace Engineering Shalabh Maroo’s research group and collaborators at the National Institute of Standards and Technology and Rensselaer Polytechnic Institute have created a single vapor bubble in a pool of liquid that can remain stable on a surface for hours, instead of milliseconds.

This method gives researchers the time necessary to microscopically study vapor bubbles and determine ways to optimize the boiling process—maximizing the amount of heat removal with a minimal rise in surface temperature. Maroo envisions that it will also open the door for advancements in many heat transfer systems.

“With this technique, we are able to analyze the fundamentals of boiling,” says Maroo. “The new understanding is going to help researchers design surface structures to achieve desired heat transfer, accurately predict as well as enhance boiling in outer space, where lack of gravity causes bubbles to stay stationary on a heated surface, and create next-generation technology for thermal management in electronics.”

Maroo’s work has been published in its entirety in Nature Publishing Group’s high-impact journal, Scientific Reports. Within, Maroo elaborates on his methods and scientific achievements of this research, which include the formation and analysis of a steady state bubble on hydrophilic (water-loving) and hydrophobic (water-repelling) surfaces with degassed and regular (containing dissolved air) water; in-situ imaging of the contact line region to measure the contact angle of a vapor bubble and analysis to determine the upper limit of heat transfer coefficient possible in nucleate boiling, which is obtained using experimental measurements of the microlayer (the thin liquid film).

This research is supported by the National Science Foundation. An Zou, who was Maroo’s Ph.D. student and first author of the published paper, successfully graduated with his Ph.D. and is currently a post-doc at University of Michigan.

  • Author

Matt Wheeler

  • Recent
  • COVID-19 Update: Get Vaccinated! | Submit Proof of Vaccination | Testing Center Hours
    Friday, April 9, 2021, By News Staff
  • Stephen Kuusisto Receives 2021 Guggenheim Fellowship in Poetry
    Friday, April 9, 2021, By Ellen de Graffenreid
  • Please Complete the Faculty/Staff COVID-19 Vaccine Status Attestation Questionnaire
    Friday, April 9, 2021, By News Staff
  • Alumnus and Trustee Marshall M. Gelfand ’50 Remembered
    Friday, April 9, 2021, By News Staff
  • Get Vaccinated | Activities for the Weekend of April 8-11 | Cautious Optimism
    Thursday, April 8, 2021, By News Staff

More In STEM

Research Computing: A Decade of Discovery on Campus

Do you need more computing power to move your work forward? Since 2011, the Research Computing team within Information Technology Services (ITS) has helped faculty and staff tackle computational challenges beyond the capabilities of a normal desktop or laptop computer. Each…

Engineering Professor Shobha Bhatia Receives 2021 Judith Greenberg Seinfeld Scholar Award

Civil and Environmental Engineering Professor Shobha Bhatia has been honored by Chancellor Kent Syverud with a 2021 Judith Greenberg Seinfeld Scholar award. The award recognizes exceptional creativity and a passion for excellence. It provides $10,000 for Bhatia to undertake an…

Using Syracuse Lava to Understand Metal Worlds

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary…

Sophomore Ellen Jorgensen Named a 2021 NOAA-Hollings Scholar

In high school, Ellen Jorgensen was highly involved in the Green Club in her school and led initiatives that focused on waste reduction. She also developed education initiatives for her peers to give them a sense of responsibility regarding the…

Celebrating Earth Day and Earth Month in April

Around the world, April is a month of celebrating and increasing awareness about climate change and the environment. The Sustainably Management team’s goal this year is to inspire the campus community to learn how they can participate in helping protect…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.