Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded Grant to Study Physical Cell Biology

Tuesday, June 16, 2015, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has been awarded a major grant to study how the shape and motion of individual cells mold biological tissues into three-dimensional shapes.

M. Lisa Manning

M. Lisa Manning

M. Lisa Manning, associate professor of physics, is part of a trio of researchers who have received $168,750 from the Gordon and Betty Moore Foundation and the Research Corp. for Science Advancement (RCSA) to explore untested ideas in physical cell biology. Their project, “Immersive DNA Force Sensors and Predictive Mechanical Modeling for Tissue Morphogenesis,” grew out of a research competition recently held at Biosphere 2 in Arizona.

Manning’s team includes Justin Kinney, assistant professor of biophysics at Cold Spring Harbor Laboratory, and Margaret Gardel, assistant professor of physics at the University of Chicago.

“As we grow from a fertilized egg into a human being, our cells push and pull against one another, shaping our tissues, our organs and our bodies,” says Manning, who studies the mechanical behavior of biological cells. “Unfortunately, we don’t know much about these microscopic forces, both within and between cells, and how they enable large, multicellular structures, such as people, to develop.”

To address this complex phenomenon, she and her team have proposed an innovative method for measuring and modeling such forces in tissues. They plan to insert small “nanoprobes” of DNA into developing tissues to record where and when these forces occur. The team will also build predictive 3D computational models that will be directly tested with data from the new force probes—a first in the field of physical cell biology.

“Currently, there are methods for measuring forces in tissues along two-dimensional surfaces, but our proposal promises to enable such measurements in three dimensions,” says Manning, adding that principles of theoretical physics will inform much of the process. “It will provide a critical advance for understanding how three-dimensional structures, such as organs, are formed.”

The idea for the project was conceived during a March conference at Biosphere 2. The conference was part of a two-year Scialog program titled “Molecules Come to Life.” Scialog—a portmanteau word blending “science” and dialogue”–is a conference that fosters intensive discussions, team building and on-the-spot collaborations among early-career researchers.

Manning says she and her teammates worked intensely over several days to create an “original, blue-sky, high-risk” research proposal.

“We were one of five interdisciplinary teams awarded grants,” she says, adding that the conference included other early-career physicists, biologists and chemists. “By bringing together theorists and experimentalists, we are building a community of researchers that seek answers to important biological questions, while increasing our understanding of the physical biology of cells.”

  • Author

Rob Enslin

  • Recent
  • Christine Stallmann Named University’s Chief Compliance Officer
    Thursday, September 28, 2023, By Jennifer DeMarchi
  • Ian Hosein Awarded New Patent For Process that Generates Energy from Saltwater
    Thursday, September 28, 2023, By Kwami Maranga
  • What to Expect With the Link Hall Renovations
    Thursday, September 28, 2023, By Kwami Maranga
  • New Student Association Leaders Aim to Get More Students Involved
    Thursday, September 28, 2023, By John Boccacino
  • Chancellor Syverud Addresses Athletics, Benefits, Sustainability at University Senate
    Wednesday, September 27, 2023, By News Staff

More In STEM

Ian Hosein Awarded New Patent For Process that Generates Energy from Saltwater

The lack of access to clean drinking water impacts billions worldwide. With an estimated 46% of the global population affected, underdeveloped communities don’t have the means to utilize efficient technology for water purification. As the percentage of those affected grows,…

Setting the Agenda in Biology Research: 2 Professors Join NIH Peer Review Committees

The Center for Scientific Review (CSR) is known as the “gateway” for National Institutes of Health (NIH) grant applications. Expert peer review groups—also called study sections—formed by the CSR assess more than 75% of the thousands of research grant applications…

Satisfy Your Research Curiosity at BioInspired Institute Symposium Oct. 19 and 20

Are you interested in knowing how living cells function? Do you wonder how scientists grow human tissues in the lab? Have you pondered how robots are programmed to work? If science piques your interest, delve into the topic at the…

iSchool Student Selected for Highly Competitive Data Librarianship Internship

Katya Mueller, a student in the School of Information Studies’ master of library and information science (MLIS) program, was selected as a 2023 National Center for Data Services data librarianship internship participant. Mueller, who plans to graduate in spring 2024,…

Exploring the Existence of Life at 125 Degrees Fahrenheit

There are an estimated 8.7 million eukaryotic species on the planet. These are organisms whose cells contain a nucleus and other membrane-bound organelles. Although eukaryotes include the familiar animals and plants, these only represent two of the more than six…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.