Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Engineers study how contaminated soil can be drained, utilized

Thursday, November 1, 2012, By News Staff
Share
College of Engineering and Computer ScienceResearch and Creative

LCS research published in Geosynthetics International

Each year, 400 million cubic yards of soil are dredged from water bodies in the United States alone. Much of this byproduct is contaminated, deemed unusable and put into landfills. Mahmoud M. Khachan, Shobha K. Bhatia and Jennifer L. Smith are working to answer the question of how the soil can be drained and utilized.

A technical paper, “Retention performance of woven geotextiles subjected to cyclic flow conditions” by Khachan, Bhatia and Smith, was recently published in Geosynthetics International. The paper discusses research taking place in Syracuse University’s L.C. Smith College of Engineering and Computer Science (LCS).

Khachan is a doctoral candidate in LCS; Bhatia is a professor of civil and environmental engineering in LCS; and Smith is an assistant professor at the SUNY College of Environmental Science and Forestry.

There are thousands of types of geotextiles (plastics) used on roads, retaining walls, levees, landfills and lakes that serve to contain and reinforce soil. Each contains its own properties (such as weave patterns and fibers). The research performed by Bhatia, Khachan and Smith focuses on the retention performance of specific woven geotextiles used for these purposes. Geotextiles are permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect or drain. They come in three basic forms: woven, needle punched or heat bonded.

The geotextiles, selected based on use and application, were subjected to cyclic flow conditions in which water ran in and out similar to a tide flow. Cylinders were used to simulate a cyclic flow system. The study also tested different types of sands commonly found near water bodies.

The developments being made through this research are relatively simple and can be used to address dredge sediments from water bodies. Practical use of these geotextiles includes sand dune armoring to protect upland coastal property from storms, waves and floods. Industrial waste, often found in water bodies such as lakes and rivers, can be dewatered using a geotextiles tube dewatering system.

The study was supported by the Geosynthetic Institute (GSI) fellowship provided to Khachan, who is studying geotextiles.

“Our students are doing truly innovative things,” says Bhatia, professor and former chair in the Department of Civil and Environmental Engineering. The structure of various constructions, such as levees, would fail if the soil was not retained when water seeps through them.

“In the academic setting, we plant the seeds,” says Bhatia. “They grow in the industry where our students develop their ideas into technologies.”

This study will allow for the development of design criteria for choosing the right geotextiles and equipment when building waterway structures. The participants are also beginning to explore the use of starches to dewater soil.

Bhatia is funded by the National Science Foundation (NSF) to do more extensive research on geotextiles. This year, she will be taking a lead role in organizing an international conference, “Geosynthetics 2013,” where several of her students will be presenting their research. Bhatia’s research efforts have focused on the application of geosynthetics and natural materials in waste containment, road and retaining walls and erosion control. She has also served as the vice president of the North American Geosynthetics Society (NAGS).

  • Author

News Staff

  • Recent
  • Exploring the Existence of Life at 125 Degrees Fahrenheit
    Tuesday, September 26, 2023, By Dan Bernardi
  • Cool Class: Mona Awad’s Art of the Fairy Tale
    Tuesday, September 26, 2023, By Dan Bernardi
  • How Climate Warming Could Disrupt a Deep-Rooted Relationship
    Tuesday, September 26, 2023, By Dan Bernardi
  • Be Proactive: How to Keep Yourself Safe on Campus
    Tuesday, September 26, 2023, By Christine Weber
  • Academic Strategic Plan Launch Symposium Set for Sept. 26
    Monday, September 25, 2023, By Wendy S. Loughlin

More In STEM

Exploring the Existence of Life at 125 Degrees Fahrenheit

There are an estimated 8.7 million eukaryotic species on the planet. These are organisms whose cells contain a nucleus and other membrane-bound organelles. Although eukaryotes include the familiar animals and plants, these only represent two of the more than six…

How Climate Warming Could Disrupt a Deep-Rooted Relationship

Children are taught to leave wild mushrooms alone because of their potential to be poisonous. But trees on the other hand depend on fungi for their well-being. Look no further than ectomycorrhizal fungi, which are organisms that colonize the roots…

Turning Young Enthusiasts Into Scientific Researchers

Miguel Guzman ’24, a native of Lima, Peru, is a senior biotechnology major in the College of Arts and Sciences with an entrepreneurship and emerging enterprises minor in the Whitman School of Management. His research centers on developing bio-enabled protein…

Center for Sustainable Community Solutions and Environmental Finance Center Announces New Director

The College of Engineering and Computer Science is pleased to announce the transition of Melissa Young into a new role as director of the Center for Sustainable Community Solutions-Environmental Finance Center (CSCS-EFC) at Syracuse University. CSCS-EFC is housed within the…

Civil and Environmental Engineering Professor Attends UN Session on Reducing Plastic Pollution

Civil and Environmental Engineering Professor Svetoslava Todorova attended the second session of the United Nations (UN) Intergovernmental Negotiations Committee on Plastics this summer in Paris, France. Todorova was invited as an academic expert based on her research on the environment,…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.