Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Physicists Design Technology Used to Discover New Information About What the Universe Is Made Of

Tuesday, July 11, 2023, By News Staff
Share
College of Arts and SciencesPhysics
Individual in a cleanroom performing scientific testing.

Physics graduate student Hangyi Wu gets ready to utilize a vacuum pick-up tool designed by the High-Energy Physics group for one of the delicate operations involved in assembling the instrumented staves.

College of Arts and Sciences (A&S) physicists just launched a new tracking device to research the fundamental forces and particles in the universe. The device, known as the Upstream Tracker, was installed at the renowned European Organization for Nuclear Research (CERN) laboratory on the Swiss-French border just outside of Geneva, which uses some of the world’s largest and most complex scientific instruments to study fundamental particles.

The Upstream Tracker is part of an ambitious upgrade to the “Large Hadron Collider beauty (LHCb)” experiment taking data at the Large Hadron Collider at CERN, which aims to uncover information about the universe through science known as new physics. New physics is knowledge that enhances the current understanding of how the universe works. The university’s High-Energy Physics group working at LHCb led an international team of collaborators that designed and constructed this detector.

The installation is the culmination of a decade of research and work, led by physics professor Marina Artuso. The project received nearly $7 million in awards from the National Science Foundation, with a majority of the funds going directly to Syracuse research.

The Upstream Tracker will help scientists search for knowledge beyond the “Standard Model” of physics, which is the current best theory about the building blocks of the universe. The Upstream Tracker is a crucial component of the LHCb tracking system, used to reconstruct the positions of the subatomic particles produced in the proton-proton collisions, and is part of a high-speed processor that implements sophisticated algorithms to make real-time decisions about what to record. It’s technology that will empower physicists to make key discoveries about fundamental particles.

While the Standard Model explains a great deal about the physical matter and forces in the universe, there are significant phenomena that it doesn’t explain, says Artuso, like the existence of dark matter and dark energy, which are invisible but account for about 95 percent of the universe, and the reason why the current universe is stable. The LHCb and Upstream Tracker were designed to help physicists solve these big mysteries through new physics.

Three individuals in masks looking at complex shipping structures.

Graduate students Andy Beiter, Joseph Shupperd and Michael Wilkison perform the final checks on five instrumented staves which are secured in complex shipping structures to safely deliver them to CERN.

Nearly 50 undergraduate students and tens of graduate students contributed to this project over the years and several Syracuse faculty members played key roles, including the late Sheldon Stone, who served as project deputy, along with physics professor Steven Blusk, who led test beam studies of detector prototypes, associate physics professor Matt Rudolph, who led the sensor acquisition, physics professor Tomasz Skwarnicki, who is leading the software effort to process the detector information. Physics research assistant professor Ray Mountain was a key player in the detector mechanics and oversaw the production of the detector units in the clean rooms built for this project.

“One of the main tenets of my physics work is to solve mysteries about how the universe works through new physics. But, new physics can be very subtle, elusive, and difficult to detect. Nature wants us to work a little harder to find these secrets. The Upstream Tracker is a key component of the upgraded LHCb detector that is poised to observe rare processes between particles that occur below the current sensitivity level,” says Artuso.

For the full Q&A with Artuso and a pair of alumni share their experience on this project and offered insights about what they hope this device will contribute to human knowledge, visit artsandaciences.syracuse.edu.

Story written by Emily Halnon.

  • Author

News Staff

  • Recent
  • ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology
    Friday, June 6, 2025, By Kwami Maranga
  • Libraries Innovation Scholar Launches Utopia, a Transparent Beauty Brand
    Friday, June 6, 2025, By News Staff
  • Ian ’90 and Noah Eagle ’19 Share a Love of Sportscasting and Storytelling (Podcast)
    Thursday, June 5, 2025, By John Boccacino
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Japan’s Crackdown on ‘Shiny’ Names Sparks Cultural Reflection
    Tuesday, June 3, 2025, By Keith Kobland

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.