Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A&S Chemist Develops Ultrasensitive Molecular Force Sensors

Thursday, March 27, 2025, By News Staff
Share
BioInspiredCollege of Arts and Sciencesfacultystudent research

Professor Xiaoran Hu in the College of Arts and Sciences has developed molecules that undergo mechanochemical transformations, which could be used to report nanoscale stress in plastics and help scientists study mechanobiology processes.

Plastic components are commonly used in infrastructure and transportation that we depend on—from water and sewer pipes to planes, trains and automobiles. But plastic materials experience stresses that degrade them over time. That’s why plastics in many critical applications are replaced on pre-set schedules, which is expensive but crucial for maintenance and public safety.

A professor smiles while posing for a headshot.

Xiaoran Hu

“When mechanical forces cause stress and deformation that go unnoticed in the plastic engineered parts of an airplane, for instance, it can cause significant consequences that we want to avoid,” says Xiaoran Hu, assistant professor of chemistry and member of the BioInspired Institute.

Supported by the University and the American Chemical Society (ACS) Petroleum Research Fund, Hu and his team have created new molecules that someday could cut down on these risks and expenses. Mechanophores are molecules that respond to mechanical stress by changing characteristics such as their colors, and their incorporation into plastic components could enable visualization of mechanical stress. Hu’s team developed exceptionally sensitive mechanophore molecules—called “configurational mechanophores,”—that undergo mechanochemical isomerization reactions. The activated material can exhibit a color to indicate that a mechanical event has happened in a component. This visible signal would be useful in applications such as autonomous damage monitoring of materials.

“These new molecules could enable research into previously unobservable mechanical events in different materials, including synthetic plastics and biomaterials,” Hu says.

The image illustrates a mechanosensitive material that changes color when force is applied. The top section shows a chemical structure with the label "131 pN (1.31 x 10^-10 newtons)" and two test tubes, one clear and one pink, indicating color change upon mechanical activation. The middle section lists potential applications: (1) Self-reporting plastics for critical infrastructure, vehicle/aircraft components, and motion-tracking wearables; (2) Mechanobiology studies. The bottom section depicts a schematic of traction forces acting on a cell with arrows indicating mechanosensing.

Ultrasensitive molecular force sensors facilitate structural health monitoring in plastic components and could enable scientists to investigate previously unobservable mechanical events in biological systems.

The Syracuse team’s mechanophores are unique. According to a new study in the Journal of the ACS, their chemical transformation is triggered by minus mechanical forces as low as 131 piconewtons, which is below what is required to trigger any other mechanochemical reactions known up to date. For comparison, mechanochemical reactions involving carbon-carbon bond scission typically require nanonewton scale of forces (1 nanonewton = 1000 piconewton). Hu’s mechanophores, on the other hand, are more sensitive than the tiny forces relevant in many biological molecules, such as the unzipping of DNA strands (~300 pN), the unfolding of protein domains, and the breaking of antibody-antigen bonds (~150-300 pN). The new mechanophores could be effective tools in biology, allowing scientists to study stress changes at the nanoscale that were previously unobservable or difficult to measure. This could lead to a better understanding of how mechanical forces influence and regulate various processes in biology.

Additionally, unlike most traditional mechanophores, which are prone to damage by heat or light, the new molecules are stable upon thermal and light exposure, and therefore are well suited for applications in different complex environments.

Hu’s research on configurational mechanophores paves the way for the development of mechano-responsive materials with unprecedented mechanosensitivity. These materials could enable the study of previously unobservable nanoscale mechanical behaviors, playing a crucial role in advancing our understanding across scientific disciplines ranging from polymer physics, materials science, to mechanobiology.

“Our lab is developing the next-generation molecular force sensors with further enhanced mechanosensitivity and capable of exhibiting fluorescence signals or other functional responses,” Hu says. “We also aim to apply our mechanophores to different materials platforms such as mechanosensitive elastomers and paints to develop safer and smarter plastics that autonomously monitor and report mechanical damage. Additionally, we will explore the potential of these molecular force sensors to investigate cellular processes in the future.”

Story by John H. Tibbetts

  • Author

News Staff

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America’s Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.