Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Getting to the ‘Point’: Powerful Computing Helps Identify Potential New Treatments for Coronaviruses

Thursday, January 19, 2023, By News Staff
Share
BioInspiredCollege of Arts and SciencesCOVID 19facultyResearch and CreativeSTEM
head shot

Atanu Acharya

Coronaviruses, such as the one that causes COVID-19, have numerous protruding spikes salting their surfaces. When a coronavirus raises one of these spike proteins—like opening a finger to full length—it becomes capable of invading a human cell. The pointed spike can insert its key-like domain into a keyhole protein (ACE2) in the outer wall of a human cell, binding to it. And the spike protein becomes a gateway for infecting a cell.

In those moments, however, a coronavirus reveals its Achilles’ heel.

Coronavirus surfaces are mostly coated with sugars or glycans. In recent years, researchers have learned that glycans offer coronaviruses camouflage protection from antibodies, which are proteins that protect you when a potentially harmful substance enters your body. Antibodies need an exposed beachhead for an assault on a coronavirus, but glycans conceal landing areas (epitopes) and help thwart attacks.

A team of researchers have been searching for un-sugared locations on coronavirus spikes where antibodies have a better chance to attach and stop infections of human cells.

“We tested and compared seven known antibodies, and some of them work well in grabbing onto the exposed part of the spike protein,” says Atanu Acharya, assistant professor in the Department of Chemistry and member of the BioInspired Institute. “Different antibodies target different spots on the spike protein.”

As a co-first author, Acharya recently published a study in Communications Biology with lead author James C. Gumbart, associate professor in the School of Physics at the Georgia Institute of Technology. Acharya performed this research while a postdoctoral fellow at Georgia Tech and is continuing his studies of coronavirus antibodies at his Syracuse University lab.

To simulate un-sugared locations exposed on opening and closing spike proteins, the team used the fastest computer available in the United States to model the corona of the novel coronavirus SARS-CoV-2—the virus which caused COVID-19. The supercomputer, Summit, is housed at Oak Ridge National Laboratory in Tennessee.

“We used this ‘computational microscope’ to look at atomistic details of the entire route as the spike opens and how antibodies can play a role by attacking this gateway when that happens,” Acharya says. “We wanted to understand why one antibody is better than the others and why some antibodies are more successful in attacking parts of the spike protein.”

Antibodies race to stop a coronavirus infection from crossing the spike gateway and entering a cell. And the coronavirus races to complete the infection process before antibodies destroy it. Sometimes this continues even when the spike key has entered the cell’s keyhole. “There are moments when antibodies can attack the coronavirus spike even when it has already attached to the cell,” Acharya says

In his lab, Acharya hopes to find a “pan-coronavirus” antibody that could treat multiple variants of the novel coronavirus and future coronaviruses.

A big mystery in developing antibodies for treatment is the complex role of glycans. These sugars are more than just shields against invading antibodies. Glycans also have multiple roles in opening and closing spike proteins. For instance, glycans function as sticky material, helping to hold a spike in an “up” position, allowing the coronavirus a chance to bind to a cell.

“Glycans play a role in stabilizing the open state of the spike protein that is crucial for infecting the cell,” says Acharya.

Glycans can also help hold a spike in a closed position, limiting its capacity to become a gate for infection.

The infectious capability of a coronavirus might depend on how rapidly it can transition its spike protein from a closed state to an open state and continue holding there to invade a human cell despite threats from antibodies. Therefore, researchers want to identify the most potent and fast-acting antibodies for the job, ones that can immediately identify the best place on the spike protein to attack.

Story by John H. Tibbetts 

  • Author

News Staff

  • Recent
  • Doctoral Candidate Wins Grant for Research on Infrastructure, Violence and Resistance in Pakistan
    Friday, August 1, 2025, By News Staff
  • Co-President of Disability Law Society Eyes Career in National Security Law in Washington
    Thursday, July 31, 2025, By Jordan Bruenger
  • Lender Center New York Event Gathers Wealth Gap Experts
    Wednesday, July 30, 2025, By Diane Stirling
  • After Tragedy, Newhouse Grad Rediscovers Her Voice Through Podcasting
    Wednesday, July 30, 2025, By Chris Velardi
  • Back-to-School Shopping: More Expensive and Less Variety of Back-to-School Items
    Tuesday, July 29, 2025, By Daryl Lovell

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.