Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biology Professor Investigates Polar Bear Paw Design Principles

Friday, January 6, 2023, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesDepartment of Biologyfaculty researchPolar BearsSTEM

stock image of a polar bear

Using the solutions observed in nature to address global challenges in health, medicine and materials innovation is at the heart of research by BioInspired Syracuse. Austin Garner, assistant professor of biology and member of BioInspired, specializes in functional morphology—studying the form and function of animals and then applying it to bio-inspired designs in a wide range of applications.

Garner recently co-authored a paper in the Journal of the Royal Society Interface exploring design principles on polar bear paws, which allow them to have better traction on ice compared to other bear species. The work identifies a new nature-based method that could be incorporated into human engineering challenges associated with traction, namely for products that slip on snow and ice such as tires and shoes.

Garner took part in the research as a Ph.D. student at the University of Akron. His collaborators were Ali Dhinojwala, the H.A. Morton Professor of Polymer Science in Akron’s School of Polymer Science and Polymer Engineering, and Nathaniel Orndorf, a 2022 Ph.D. graduate from Akron who now works as a senior material scientist at the tire company Bridgestone Americas.

Profilometry scan of bear paw prints

The team scanned bear paw prints using a surface profilometer to evaluate their features

They used actual samples and replicas of bear paw pads from museums, taxidermists and other collections, and imaged them using a scanning electron microscope and a surface profilometer, instruments that can measure surface texture and features. The team also created 3D printouts of the structures to vary diameter and height of features and tested them in the lab to see how they reacted to snow conditions.

The group specifically studied the hard bumps on the foot pads of bear paws called papillae, which have long been thought to help them grip ice and keep from slipping. The team discovered that the papillae on polar bears were taller than other species—up to 1.5 times. Importantly, the taller papillae of polar bears help to increase traction on snow relative to shorter ones.

Even though polar bears have smaller paw pads compared to the other species (likely because of greater fur coverage for heat conservation), the taller papillae of polar bears compensate for their smaller paw pads, giving them a 30-50% increase in frictional shear stress—or lateral grip.

“This is exciting interdisciplinary work that studied a long-held belief that the micro-structures on polar bear paw pads were an adaptation to increase traction on ice and snow,” says Garner. “Our work shows that the papillae themselves are not an adaptation for this because other bears have them, but the unique dimensions of polar bear papillae do confer an advantage in traction.”

The team now hopes that other scientists and manufacturers can apply their research to product design. For example, snow tires now have deeper treads than all-season tires, but this research could also suggest design modifications for increased traction.

Read the team’s full paper, “Polar bear paw pad surface roughness and its relevance to contact mechanics on snow,” in the Journal of the Royal Society Interface.

  • Author

Dan Bernardi

  • Recent
  • Chancellor Leads Ceremony Recognizing Crown Honors Professors
    Tuesday, January 31, 2023, By Dan Bernardi
  • 7 Reasons to Attend Interfaith Exploration Week
    Tuesday, January 31, 2023, By Dara Harper
  • NBA Hall of Famer and Former Detroit Mayor Dave Bing ’66 to Speak on Feb. 17
    Tuesday, January 31, 2023, By Jessica Youngman
  • Arts and Sciences Professors Honored by American Association for the Advancement of Science
    Tuesday, January 31, 2023, By John Boccacino
  • A Critical Link: Field Supervisors Support Teachers-in-Training Through Experience and Reflection
    Tuesday, January 31, 2023, By News Staff

More In STEM

Syracuse University Environmental Finance Center Receives Multi-Million Dollar Environmental Protection Agency Grant to Support Underserved Communities

The Syracuse University Environmental Finance Center (SU-EFC) was selected by the United States Environmental Protection Agency (EPA) to serve as a regional Environmental Finance Center (EFC) to help communities access federal infrastructure funds and continue supporting environmental and financial challenges in…

Getting to the ‘Point’: Powerful Computing Helps Identify Potential New Treatments for Coronaviruses

Coronaviruses, such as the one that causes COVID-19, have numerous protruding spikes salting their surfaces. When a coronavirus raises one of these spike proteins—like opening a finger to full length—it becomes capable of invading a human cell. The pointed spike…

Researchers Reject 30-Year-Old Paradigm: Emergence of Forests Did Not Reduce CO2 in Atmosphere

It’s hard to imagine our planet without trees. From providing wildlife habitat to reducing erosion and absorbing carbon dioxide (CO2) from the air, trees play an important role in maintaining a livable environment. But trees haven’t been around forever. Over…

Nature-Inspired Designs Could Offer Solutions for Global Challenges

Bioinspired research draws from the natural world to develop solutions for global challenges. But it can be difficult to turn these research ideas into actual materials and methods that can be applied to real world problems in areas like construction,…

A&S Alumni Making a Difference at Moderna

When Amy Rabideau ’10 started working at Moderna in 2015, she never imagined that she would someday help fight one of the world’s deadliest viruses. Fresh out of the Massachusetts Institute of Technology, where she had received a Ph.D. in…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.