Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University Is Part of Elite Multi-Institutional Physics Research Hub

Thursday, August 5, 2021, By Dan Bernardi
Share
College of Arts and SciencesDepartment of PhysicsResearch and Creative

Top physicists from five institutions from around the United States, including Duncan Brown, Charles Brightman Endowed Professor of Physics in the College of Arts and Sciences, will come together to explore the physics of neutron stars—the densest form of matter observed in the universe. The Nuclear Physics from Multi-Messenger Mergers (NP3M) Focus Research Hub establishes a collaborative research group that will investigate the properties of dense, strongly interacting matter present within neutron stars. By understanding neutron stars, physicists hope to learn more about the similarly dense properties of atomic nuclei.

Neutron star

Artist’s illustration of two merging neutron stars. The rippling space-time grid represents gravitational waves that travel out from the collision. (Credit: NSF/LIGO/Sonoma State University/A. Simonnet)

Neutron stars and the merging of neutron stars play a critical role in the cosmos. When massive stars exhaust their nuclear fuel and die, their cores collapse and the outer layers explode away. What was once a star many times larger than the sun becomes the most dense matter in the universe: a neutron star, which packs one and a half times the mass of the sun into a ball the size of Manhattan.

When two neutron stars orbit one another, they spiral inward due to gravitational radiation until they collide, sending out gravitational waves throughout the galaxy. The gravitational waves generated by these collisions are detected using observatories like the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory (LIGO). The colliding neutron stars can also create bright flashes of light which can be seen by telescopes on Earth and in space. Multi-messenger astronomy, which combines these “messenger” signals in light and gravity, can help researchers answer one of the most fundamental open questions in science: what is the physics that governs the structure of atomic nuclei?

Brown is principal investigator for the Syracuse University team. Other NP3M institutions include University of Tennessee-Knoxville, Pennsylvania State University, the University of Houston and Indiana University. Another 13 senior investigators from other U.S. institutions will contribute, along with 26 international groups.

The NP3M research hub will assemble a diverse range of scholars, including nuclear theorists, computational astrophysicists, gravitational-wave astrophysicists and multi-messenger observers. The members’ expertise will enable the development of nuclear models and astrophysical simulations to understand electromagnetic and gravitational-wave observations of merging neutron stars.

Duncan Brown

Brown brings to the NP3M research hub expertise in gravitational-wave astronomy. In 2017, he was among a team of researchers who witnessed the aftereffects of a collision of two massive neutron stars: the process of gold being created. Using LIGO observations of neutron star collisions, Brown has studied the nature of matter at extremely high densities and pressures—far higher than can be created in a laboratory on the Earth. Observing these collisions has revealed key information about how the nucleus behaves, but researchers say there are still many unanswered questions that NP3M will look to resolve.

“A complete description of matter at the densities found in atomic nuclei still eludes scientists,” says Brown. “Discovering this ‘nuclear equation of state’ would transform our understanding of dense matter. Multi-messenger astronomy—observations with both gravitational waves and light—are one of the NSF’s ‘Ten Big Ideas’ for research that will advance science and technology in the United States. Multi-messenger observations give us unique insights into the nature of matter and energy and help to answer some of the most profound questions before humankind.”

The NP3M research hub will also play a significant role in training the next generation of physicists, from students to post-doctoral researchers. The grant will fund post-doctoral scholars at Syracuse University who will use gravitational-wave observations of neutron star mergers to study the nature of extremely dense matter.

“Syracuse scientists will bridge nuclear theory and computer models to gravitational-wave observations made by Advanced LIGO,” Brown says. “They will work closely with hub scientists from across the U.S. with the expertise needed to unlock the secrets of the nucleus using neutron star mergers.”

According to Brown, another key part of this project is guiding the development of Cosmic Explorer, the next-generation gravitational wave observatory currently under development that will profoundly change researchers’ gravitational-wave view of the cosmos. Syracuse University is one of the lead institutions globally in the development of Cosmic Explorer.

Through a coordinated effort over the next five years, NP3M will make significant breakthroughs in gravitational-wave astrophysics, advance the understanding of dense matter, and educate future researchers. Together, their collaboration will help to unlock some of the universe’s most hidden secrets.

  • Author

Dan Bernardi

  • Recent
  • Utility Projects to Begin on Campus This Week; Temporary Closures and Detours Expected Throughout the Summer
    Monday, May 12, 2025, By Jennifer DeMarchi
  • 3 New Members Elected to University’s Board of Trustees
    Monday, May 12, 2025, By Eileen Korey
  • Arts and Sciences Hosts Inaugural Scholarship and Research Gala
    Friday, May 9, 2025, By Sean Grogan
  • Chancellor Kent Syverud Honored as Distinguished Citizen of the Year at 57th Annual ScoutPower Event
    Thursday, May 8, 2025, By News Staff
  • New Maymester Program Allows Student-Athletes to Develop ‘Democracy Playbook’
    Thursday, May 8, 2025, By Wendy S. Loughlin

More In STEM

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Distinguished ECS Professor Pramod K. Varshney Establishes Endowed Faculty Fellowship

Distinguished Professor Pramod K. Varshney has exemplified Orange excellence since joining the University as a 23-year-old faculty member. A world-renowned researcher and educator, he’s been recognized for his seminal contributions to information fusion and related fields, introducing new, innovative courses…

Earth Day Spotlight: The Science Behind Heat Pumps (Video)

Peter Wirth has a two-fold strategy when it comes to renovating his home. The Brooklyn, New York, native has called Central New York home for more than 40 years. Nestled on a quiet cul-de-sac in Fayetteville, New York, the 1960s-era…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.