Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University Is Part of Elite Multi-Institutional Physics Research Hub

Thursday, August 5, 2021, By Dan Bernardi
Share
College of Arts and SciencesDepartment of PhysicsResearch and Creative

Top physicists from five institutions from around the United States, including Duncan Brown, Charles Brightman Endowed Professor of Physics in the College of Arts and Sciences, will come together to explore the physics of neutron stars—the densest form of matter observed in the universe. The Nuclear Physics from Multi-Messenger Mergers (NP3M) Focus Research Hub establishes a collaborative research group that will investigate the properties of dense, strongly interacting matter present within neutron stars. By understanding neutron stars, physicists hope to learn more about the similarly dense properties of atomic nuclei.

Neutron star

Artist’s illustration of two merging neutron stars. The rippling space-time grid represents gravitational waves that travel out from the collision. (Credit: NSF/LIGO/Sonoma State University/A. Simonnet)

Neutron stars and the merging of neutron stars play a critical role in the cosmos. When massive stars exhaust their nuclear fuel and die, their cores collapse and the outer layers explode away. What was once a star many times larger than the sun becomes the most dense matter in the universe: a neutron star, which packs one and a half times the mass of the sun into a ball the size of Manhattan.

When two neutron stars orbit one another, they spiral inward due to gravitational radiation until they collide, sending out gravitational waves throughout the galaxy. The gravitational waves generated by these collisions are detected using observatories like the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory (LIGO). The colliding neutron stars can also create bright flashes of light which can be seen by telescopes on Earth and in space. Multi-messenger astronomy, which combines these “messenger” signals in light and gravity, can help researchers answer one of the most fundamental open questions in science: what is the physics that governs the structure of atomic nuclei?

Brown is principal investigator for the Syracuse University team. Other NP3M institutions include University of Tennessee-Knoxville, Pennsylvania State University, the University of Houston and Indiana University. Another 13 senior investigators from other U.S. institutions will contribute, along with 26 international groups.

The NP3M research hub will assemble a diverse range of scholars, including nuclear theorists, computational astrophysicists, gravitational-wave astrophysicists and multi-messenger observers. The members’ expertise will enable the development of nuclear models and astrophysical simulations to understand electromagnetic and gravitational-wave observations of merging neutron stars.

Duncan Brown

Brown brings to the NP3M research hub expertise in gravitational-wave astronomy. In 2017, he was among a team of researchers who witnessed the aftereffects of a collision of two massive neutron stars: the process of gold being created. Using LIGO observations of neutron star collisions, Brown has studied the nature of matter at extremely high densities and pressures—far higher than can be created in a laboratory on the Earth. Observing these collisions has revealed key information about how the nucleus behaves, but researchers say there are still many unanswered questions that NP3M will look to resolve.

“A complete description of matter at the densities found in atomic nuclei still eludes scientists,” says Brown. “Discovering this ‘nuclear equation of state’ would transform our understanding of dense matter. Multi-messenger astronomy—observations with both gravitational waves and light—are one of the NSF’s ‘Ten Big Ideas’ for research that will advance science and technology in the United States. Multi-messenger observations give us unique insights into the nature of matter and energy and help to answer some of the most profound questions before humankind.”

The NP3M research hub will also play a significant role in training the next generation of physicists, from students to post-doctoral researchers. The grant will fund post-doctoral scholars at Syracuse University who will use gravitational-wave observations of neutron star mergers to study the nature of extremely dense matter.

“Syracuse scientists will bridge nuclear theory and computer models to gravitational-wave observations made by Advanced LIGO,” Brown says. “They will work closely with hub scientists from across the U.S. with the expertise needed to unlock the secrets of the nucleus using neutron star mergers.”

According to Brown, another key part of this project is guiding the development of Cosmic Explorer, the next-generation gravitational wave observatory currently under development that will profoundly change researchers’ gravitational-wave view of the cosmos. Syracuse University is one of the lead institutions globally in the development of Cosmic Explorer.

Through a coordinated effort over the next five years, NP3M will make significant breakthroughs in gravitational-wave astrophysics, advance the understanding of dense matter, and educate future researchers. Together, their collaboration will help to unlock some of the universe’s most hidden secrets.

  • Author

Dan Bernardi

  • Recent
  • Applications Open for 2025 ’Cuse Tank Competition
    Thursday, September 18, 2025, By News Staff
  • Brynt Parmeter Joins Maxwell School as Phanstiel Chair in Leadership
    Thursday, September 18, 2025, By Jessica Youngman
  • Winners of LaunchPad’s 2025 Ideas Fest
    Thursday, September 18, 2025, By News Staff
  • Resistance Training May Improve Nerve Health, Slow Aging Process
    Wednesday, September 17, 2025, By Matt Michael
  • New Faculty Members Bring Expertise in Emerging Business Practices to the Whitman School
    Tuesday, September 16, 2025, By Dawn McWilliams

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.