Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

$1.5 Million NIH Grant Funds ALS-Linked Research

Tuesday, January 12, 2021, By Dan Bernardi
Share
BioInspiredCollege of Arts and SciencesDepartment of BiologyfacultygrantNational Institutes of HealthResearch and Creative

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat or toxins, certain proteins within the cell condense into liquid-like droplets called condensates. These droplets can be thought of as a form of quality control allowing the cell to minimize the effects of the stress condition.

Carlos Castañeda

Carlos Castañeda (Please note, this image was taken prior to the COVID-19 pandemic and does not reflect current public health guidelines.)

Cases of abnormal condensate formation or persistence have recently been linked to neurodegenerative diseases like ALS (Lou Gehrig’s disease) and cancer. Thanks to a $1.5 million grant from the National Institutes of Health (NIH), Carlos Castañeda, assistant professor of biology and chemistry, and his team will investigate the regulation and dysregulation of condensates using biophysical and cell biology approaches. This research may lead to determining what causes diseases like ALS.

To function properly, cells depend on proteins to do their jobs. When a protein mutates, it can cause adverse medical conditions. The protein Castañeda and his team are studying is called Ubiquilin-2 (UBQLN2), which is part of many protein quality control pathways in the cell. Improper functioning of UBQLN2 can result in protein clumping or aggregation, which can potentially cause cells in the nervous system to die. These abnormal protein aggregates are markers for neurological diseases like ALS.

Mutations in UBQLN2 are known to be linked to ALS. Castañeda and his team, including Heidi Hehnly, assistant professor of biology, are hoping to learn how and if these ALS-linked mutations disrupt assembly and disassembly of UBQLN2-containing condensates in cells, as well as what regulates the liquidity of UBQLN2 condensates. By understanding the molecular mechanisms behind UBQLN2 condensates, the team could discover more about what leads to diseases like ALS— and potential ways to cure them.

The grant will also allow the team to determine how UBQLN2’s interactions with other proteins involved in protein quality control influence how UBQLN2 condensates form and dissolve. The team recently discovered that ubiquitin, a similar-sounding but different protein, is important for dissolving UBQLN2 condensates. Specifically, the team suspects that ubiquitin helps UBQLN2 extract and shuttle ubiquitinated proteins out of condensates and transport them elsewhere in the cell to be broken down. This may uncover a new ability for UBQLN2 to selectively extract disease-associated irregular or dysfunctional proteins from condensates.

Castañeda’s team will test this hypothesis by reconstituting the extraction process in test tubes and by developing live-imaging methods to monitor it in cells. In any case, these experiments could uncover disease mechanisms associated with ALS and other neurodegenerative disorders, while also providing a therapeutic avenue to target specific proteins found in condensates for degradation.

“We’re at the forefront of this field, as we’re looking at a unique system whose condensates are modulated by ubiquitin, a tag that targets proteins for myriad pathways including protein degradation, cell cycle control and DNA repair,” says Castañeda. “Studying how UBQLN2 condensates assemble and disassemble is likely to be applicable to how many other condensate systems in the cell work.”

Additional collaborators on the grant include Beverly Petterson Bishop Professor of Neuroscience and Professor of biology Sandra Hewett and Tanja Mittag, associate professor of structural biology at St. Jude Children’s Research Hospital. NIH is the largest public funder of biomedical research in the world, investing more than $32 billion a year to enhance life, and reduce illness and disability. NIH funded research has led to breakthroughs and new treatments, helping people live longer, healthier lives, and building the research foundation that drives discovery.

  • Author

Dan Bernardi

  • Recent
  • Office of Community Engagement Hosts Events to Combat Food Insecurity
    Wednesday, September 17, 2025, By John Boccacino
  • Resistance Training May Improve Nerve Health, Slow Aging Process
    Wednesday, September 17, 2025, By Matt Michael
  • New Faculty Members Bring Expertise in Emerging Business Practices to the Whitman School
    Tuesday, September 16, 2025, By Dawn McWilliams
  • Partnership With Sony Electronics to Bring Leading-Edge Tech to Help Ready Students for Career Success
    Tuesday, September 16, 2025, By Genaro Armas
  • Art Museum Announces Charlotte Bingham ’27 as 2025-26 Luise and Morton Kaish Fellow
    Tuesday, September 16, 2025, By Taylor Westerlund

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.