Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Where Does the Water Go?

Wednesday, July 29, 2020, By Dan Bernardi
Share
College of Arts and SciencesfacultyResearch and Creative
beaver dam analgoues

Beaver dam analogues are artificial structures that mimic the effects of actual beaver dams. They consist of wooden posts woven with vegetation to slow water velocity. (Photo courtesy of Julianne Davis)

Beavers play an important role in maintaining the habitat around streams throughout the United States. Beaver dams slow water velocity, preventing stream banks from eroding. Without these dams, the rushing water and sediment cuts the stream channel deeper into the ground, dropping the water table. If the water table drops too far below neighboring plants and shrubs, native vegetation dies off resulting in a barren landscape and a loss of biodiversity, further upsetting an area’s ecological balance.

To replicate the effects of beaver dams, a modern stream restoration technique known as “beaver dam analogues” (BDAs) has been developed. These artificial structures consist of wooden posts woven with vegetation to slow water velocity. The intention behind BDAs are to raise the water table in order to restore or maintain native vegetation and to slow water velocities to reduce erosion.

As populations of beavers have declined, municipalities, state agencies and private landowners in the western U.S. have installed BDAs, but have not necessarily monitored their effects, according to Christa Kelleher, assistant professor from the Department of Earth and Environmental Sciences. As a result, little is known about how these structures function in their surrounding landscape.

headshots of Christa Kelleher and Philippe Vidon

Christa Kelleher and Philippe Vidon

Through a grant from the National Science Foundation and in partnership with The Nature Conservancy Wyoming, Kelleher and collaborator Philippe Vidon, professor in the Department of Forest and Natural Resources at the State University of New York College of Environmental Science and Forestry, will investigate how BDAs affect the storage and flux of water along stream corridors. The team will look to answer the question: Where does the water go?

Topics Kelleher and her team will investigate include: if water in the stream primarily leaves as evaporation because the dams generate a large pond upstream; if water moves from the stream to recharge the groundwater aquifer (underground rock or sediment that holds groundwater); or if water simply moves around the BDAs into the surrounding land and then re-enters the stream through groundwater-surface water interactions.

“We will accomplish this by field observations and modeling to try to get at not just individual processes, but their interactions,” says Kelleher. “What we learn around these beaver dam analogues will be compared to similar observations and analysis along stretches of river that do not have these structures, to contrast our findings.”

The research team will complete fieldwork in Wyoming at BDAs installed by The Nature Conservancy. The group will monitor groundwater levels, surface water levels and estimate evapotranspiration (the rate of water moving from the land surface to the atmosphere). Using drone imagery, they will also observe changes to erosion and deposition. They will communicate their findings to state agencies and local stakeholders who are interested in learning more about these structures and how they affect the local ecosystem.

“We hope to understand not only how these structures impact hydrologic processes, but whether they also achieve broad management goals of that conservancy area,” says Kelleher.

With so little known about the long-term effects of BDAs, this study will provide much-needed context for how human interactions are impacting western U.S. watersheds.

  • Author

Dan Bernardi

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.