Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biomedical and Chemical Engineering Faculty Member Receives Grant to Research the Potential of Laser Technology for Printing Lung Interfaces

Friday, July 24, 2020, By Alex Dunbar
Share

Human lungs are intricate 3D structures with air sacs surrounded by blood vessels with a gap between them that can be less than one micrometer (as a frame of reference, human hair is about 100 micrometers wide). This minuscule gap/membrane between the air side and the blood side is the key to our respiratory system being able to take in oxygen and expel carbon dioxide. The thin membranes modulate oxygen transfer in the lungs, but so far no one has been able to fabricate them outside the human body.

Puskal Kunwar and Pranav Soman

Biomedical and chemical engineering Associate Professor Pranav Soman has received a grant from the Defense Advanced Research Projects Agency (DARPA) for developing a model that would mimic the complex structure of human lungs using biocompatible hydrogel materials. His research group, which includes postdoctoral associate Puskal Kunwar, will utilize a new laser technology to print structures that resemble the micrometer-sized interfaces found in human lungs. An imaging system will also be integrated to show real-time assessment of oxygen and gas exchanges across model epithelial and endothelial cell monolayers seeded within the printed structures.

Soman and Kunwar hope that this work will be a significant step towards being able to construct human organs that can save lives and speed up the recovery process.

“We believe that this multi-scale device will be useful as a physiological model and screening platform for various bio-related applications,” says Kunwar. “For instance, the device can serve as a model system to assess therapeutic efficacy of candidate drugs for lung disease.”

“With this new technology, we can recreate that one-micron membrane structure and really understand what is going on with the gas exchange in human lungs,” says Soman. “This project will pave the path towards realizing the dream of on-demand printing of a human scale lung tissue using 3D printing.”

  • Author

Alex Dunbar

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.