Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Professor Qin Collaborates with MIT to Study Fatigue Resistant Hydrogels

Tuesday, March 10, 2020, By Alex Dunbar
Share
BioInspired

For years, scientists have been interested in the potential of hydrogels in biomedical and engineering applications. Hydrogels often contain more than 90 percent water and a small percentage of synthetic polymer and are used in a variety of uses from medical electrodes, tissue engineering and dressings for hard to heal wounds.

“It is an interesting material since it is synthetic but can be bio-compatible since it is mostly water,” says Zhao Qin, assistant professor of civil and environmental engineering in the College of Engineering and Computer Science. “In particular, hydrogels are attractive for biomedical applications.”

While the high percentage of water helps make hydrogels biocompatible, the small amount of synthetic polymer means it is not very strong.

Zhao Qin

While working at the Massachusetts Institute of Technology (MIT), Qin connected with a research team that found that when they cooled a certain hydrogel to negative 20 degrees and heated it back to room temperature, the hydrogel became stronger. That team asked Qin to help with a key question: why does this material become so tough when it experiences the annealing process?

Qin joined the research collaboration to work on the modeling and theoretical calculation that could explain the way the hydrogel responded. He developed a full atomistic model to simulate the behavior of the materials. This model shows that the unwinding process of the crystal domains, which form during the annealing process of the hydrogel, dissipates much more energy than breaking the polymer chains, effectively making the material much tougher. This modeling tool could also be applied to other synthetic polymer structures to study how they would respond to different conditions.

“That’s something I want to study more in the future,” said Qin.

The research by Qin and his MIT colleagues Ji Liu, Shaoting Lin, Xinyue Liu, Yueying Yang, Jianfeng Zang and Xuanhe Zhao on “Fatigue-resistant adhesion of hydrogels” was published in the Nature Communications journal in February. Qin sees their work as a significant step forward for future hydrogel applications.

“Patients who might need a metal implant may face inflammation and corrosion issues,” says Qin. “Improved hydrogels could coat implants to make them more compatible and last for a longer time.”

Qin has joined the BioInspired Institute and is looking forward to collaborating with researchers from mechanical engineering, biomedical engineering, chemical engineering, physics, biology and other programs on the Syracuse University campus.

“I think these kinds of studies need interdisciplinary collaborations like these unique opportunities I have at Syracuse,” says Qin.

  • Author

Alex Dunbar

  • Recent
  • Calling All Alumni Entrepreneurs: Apply for ’CUSE50 Awards
    Tuesday, June 24, 2025, By John Boccacino
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.