Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University and UC Berkeley Researchers Team Up to Develop 3D Human Heart Model Showing How Cardiac Cells Fail to Adapt to a Pathological Mechanical Environment

Tuesday, February 25, 2020, By Alex Dunbar
Share
BioInspiredCollege of Engineering and Computer Scienceresearch

To better understand heart diseases, doctors and scientists are constantly trying to understand how cardiac tissue in the human heart is affected by its changing environment. Specifically, researchers have wanted to better understand how cardiac cells adjust themselves depending on the mechanical environment of the heart they are inside of. Some cardiac tissues adjust to the heterogeneous tissue mechanical environments, but studying this process is very difficult. Studying cardiac tissue inside a living person is extremely invasive and current cardiac tissue models outside the body often fail to demonstrate how cardiac cells adapt to the non-uniform changes.

researchers in labZhen Ma, professor of biomedical and chemical engineering, and his research team—in conjunction with Professors Kevin E. Healy and Costas P. Grigoropoulos at the University of California, Berkeley—have developed a 3D cardiac microtissue model that allows for more realistic variations by cardiac cells. This research was recently published in the journal Advanced Healthcare Materials.

“We used engineering to mimic the mechanical environment of a diseased heart,” said biomedical and chemical engineering graduate student Chenyan Wang. Wang was the lead author on the published article.

The research team was able to use the cardiomyocyte cells derived from human stem cells to form 3D tissues on the biomaterial scaffolds made up of fibers with different mechanical properties. Ultra-fast lasers at the Berkeley Laser Thermal Laboratory were used to 3D-print these biomaterial scaffolds at high spatial resolution. The fibers with different mechanical properties allowed the researchers to see how heart tissue responded to non-uniform mechanical environments in a realistic way.

On video, the team was able to track the beating human cardiac tissues on the scaffolds in response to the mechanical changes and gather the quantitative data in a non-invasive way. Using human cells and 3D printing technology, Wang believes the 3D modeling can help advance the way we understand heart pathology with better, more realistic data.

“This could be a non-invasive method for analyzing cardiac behaviors and functions,” said Wang.

  • Author

Alex Dunbar

  • Recent
  • Graduate Students Bring Physics to Local Classrooms With Outreach Program
    Friday, May 27, 2022, By Dan Bernardi
  • COVID-19 Update: Effective Wednesday, June 1, Masking Level Returns to Yellow
    Friday, May 27, 2022, By News Staff
  • Preparing Students for a Life of Success
    Friday, May 27, 2022, By Caroline K. Reff
  • Alumni Draw on Their Military Experience in Their Roles as Teachers
    Thursday, May 26, 2022, By Martin Walls
  • Bringing ‘CSI’ Into the Classroom
    Thursday, May 26, 2022, By Dan Bernardi

More In STEM

Graduate Students Bring Physics to Local Classrooms With Outreach Program

“When am I ever going to use this in real life?” That is the oft-heard refrain from middle- and high-school science students, struggling through labs and formulas that feel as far removed from their day-to-day as, well, space travel. Sarthak…

Bringing ‘CSI’ Into the Classroom

Dusting for fingerprints, documenting blood stain patterns and measuring bullet trajectory—you might think this is a description of a recent episode from the popular television series “CSI.” While this may be true, these are also the daily lessons students are…

Matt Cufari Named as a 2022-23 Astronaut Scholar

Matt Cufari, a senior physics major in the College of Arts and Sciences (A&S), a computer science major in the College of Engineering and Computer Science, a Coronat Scholar and a member of the Renée Crown University Honors Program, has…

Dean Rajiv ‘Raj’ Dewan to Step Down as Dean of the School of Information Studies

Rajiv “Raj” Dewan, dean of the School of Information Studies, has announced he will conclude his deanship on June 30, 2022. Dewan plans to return to full-time faculty duties while continuing his research. David Seaman, dean of Syracuse University Libraries…

Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives

In 1948, Professor James Hope Birnie became Syracuse University’s first African American faculty member in biology, teaching here until 1951. He was also one of its first biology faculty members to be supported by the National Institutes of Health (NIH)….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.