Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physics Department Works to Improve Gravitational Wave Detection

Thursday, February 6, 2020, By Dan Bernardi
Share
College of Arts and SciencesLIGONational Science FoundationPhysicsResearch and CreativeSTEM
graphic of star

Artist rendering of the collision of two neutron stars. Researchers at SU are working to improve Advanced LIGO’s ability to record gravitational waves from such events. (Credit: NSF/LIGO/Sonoma State University/Aurore Simonnet)

Albert Einstein first predicted the presence of gravitational waves in 1916 in his general theory of relativity. Fast forward 99 years to 2015, when researchers obtained the first physical confirmation of a gravitational wave generated by two colliding black holes, nearly 1.3 billion light years away. This discovery, possibly one of humanity’s greatest scientific achievements, was made possible by the National Science Foundation’s (NSF) Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO).

The Advanced LIGO uses mirrors to help detect gravitational waves caused by the merging of black holes and neutron stars, but the faint signal can be masked by temperature fluctuations on the mirrors’ surface. Finding better reflective coatings for the mirrors could prevent these fluctuations, improving LIGO’s ability to measure gravitational waves.

This is where physics faculty in the College of Arts and Sciences (A&S) come in. Thanks to a grant from the NSF, the physics department will play a key role in developing better gravitational wave detectors. The award specifically funds the purchase and construction of a “cryogenic elastic loss measurement apparatus,” which will test how mirrors with different coatings react to a wide range of temperatures. Leading the project are A&S physics Professor Stefan Ballmer, along with Steve Penn, co-principal investigator and associate professor at Hobart and William Smith Colleges.

Ballmer and his students will test coated glass sample disks from room temperature to 10 degrees above absolute zero using a device called a cryostat. The cryostat was purchased from the Syracuse-based company Cryomech, whose founder, William E. Gifford, was a professor of mechanical and aerospace engineering at Syracuse University from 1961 to 1978. The results will help show which glass coatings can improve LIGO’s wave detection. This research is part of LIGO’s Centers for Coatings Research (CCR), a collaboration funded specifically to find better coatings for gravitational-wave interferometers.

Ballmer says, “This apparatus will allow Syracuse University to play a much bigger role in finding and validating the coatings needed to upgrade Advanced LIGO and other future gravitational-wave detectors.”

Detecting and analyzing the information carried by gravitational waves has allowed researchers to observe the universe in a way never before possible, providing astronomers and other scientists with their first glimpses of previously unseen phenomena like colliding black holes, merging neutron stars and exploding stars. Through research being done by faculty and students in the Department of Physics, that view into the unseen will become even clearer.

  • Author

Dan Bernardi

  • Recent
  • Empowering Learners With Personalized Microcredentials, Stackable Badges
    Thursday, July 3, 2025, By Hope Alvarez
  • WISE Women’s Business Center Awarded Grant From Empire State Development, Celebrates Entrepreneur of the Year Award
    Thursday, July 3, 2025, By Dawn McWilliams
  • Rose Tardiff ’15: Sparking Innovation With Data, Mapping and More
    Thursday, July 3, 2025, By News Staff
  • Paulo De Miranda G’00 Received ‘Much More Than a Formal Education’ From Maxwell
    Thursday, July 3, 2025, By Jessica Youngman
  • Law Professor Receives 2025 Onondaga County NAACP Freedom Fund Award
    Thursday, July 3, 2025, By Robert Conrad

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.