Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Forensics and National Security Sciences Institute Develops DNA Tool

Thursday, November 14, 2019, By News Staff
Share
College of Arts and SciencesfacultyResearch and CreativeSTEM

hand using tool with dusting black powderDNA is everywhere—not just in bodily fluids, such as blood or saliva, but also in traces left by the touch of a finger. If more than one person has been sitting at the same table, for example, traces of each person’s DNA will be left behind and become co-mingled.

For forensic analysts and research assistant professors Michael Marciano G’18 and Jonathan Adelman G’16, the difficulty in interpreting mixed DNA samples has serious implications on criminal investigations every day.

“When DNA is recovered from a crime scene, victim or suspect, it may be a mixture of genetic information from multiple people,” says Marciano, a research assistant professor in the Forensic and National Security Sciences Institute (FNSSI) in the College of Arts and Sciences. “To successfully interpret a DNA mixture, we must first determine the number of contributors present in the sample, a process that often is time-consuming and complex. This is a critical area of need in the forensic community.”

Enter PACE, a patent pending method created by Marciano and Adelman, to solve this challenge in the field of forensic DNA analysis. Short for Probabilistic Assessment for Contributor Estimation, PACE can estimate the number of contributors in a matter of seconds, thanks to machine learning, a branch of artificial intelligence. PACE also helps to make the analytical process easier through removing non-biological signal (artifacts), such as those from contaminants that may increase the difficulty in interpreting the profile.

In cases of a sample when limited amounts of DNA are present, or degraded, or both, such pinpoint accuracy can mean the difference between simply aiding an investigation and leading to conviction or acquittal.

Speaking about the removal of non-biological signal, Marciano says, “Analysts who use standard computer programs must identify, categorize and remove irrelevant data,” adding that the National Institute of Justice (NIJ) has helped jump-start PACE’s development. “As the complexity of a [DNA] profile increases, individual contributors and artifacts become harder to separate. PACE eliminates this data-interpretation step.” 

In one of its publications, NIJ featured an article about PACE, describing its relationship with FNSSI as a success story. “PACE is leading the way toward a future filled with myriad new tools and interpretation methods that better utilize complex, challenging samples,” the article observed.

The PACE project is also a success story for the students involved. “Our graduate and undergraduate students are integral to the R&D process. In addition to getting applied science experience, they are building a professional network,” Marciano explains.

“This project is teaching me that knowledge, critical thinking and hard work are all required to advance in forensic science,” says Olivia D’Angelo G’20, a student who is working with Marciano and Adelman. “The research methods and underlying principles are helping me now and will definitely prepare me for my future career.” Marciano and Adelman agree, saying, “It is exciting to be able to actively involve students in the development of real-world solutions to problem sets faced in forensic science.”

With an overall accuracy rate of 98 percent, PACE is 20 percent more reliable than methods currently used to estimate the number of contributors in a sample. Marciano and Adelman have worked with Syracuse’s Office of Technology Transfer to license the intellectual property to commercial vendors.

A partner in the commercialization process is investor NicheVision Forensics of Akron, Ohio. “With the press of a button, PACE will quickly and accurately determine the number of contributors in a forensic mixture,” notes Vic Meles, NicheVision’s chief financial officer. He says he is optimistic that crime labs everywhere will find PACE useful.

Participation from Marciano and Adelman’s collaborators (such as the New York City Office of Chief Medical Examiner, Promega Corporation, the Onondaga County Center for Forensic Sciences and many others) has helped in the development of the method and improved PACE’s user interface.

A forensic molecular biologist by training, Marciano previously worked for Onondaga County’s Wallie Howard Jr. Center for Forensic Sciences and SRC Inc. He has recently been appointed to the Forensic Science Organization of Scientific Area Committees, a forensic science regulatory and standardization board administered by the National Institute of Standards and Technology (NIST).

Adelman also worked for SRC Inc. and has a background in computer science and machine learning. At Syracuse, he was named a Daniel Patrick Moynihan Research Fellow and focuses on teaching and research in computational forensics.

Story by Rob Enslin and College of Arts and Sciences News Staff

  • Author

News Staff

  • Recent
  • Office of Community Engagement Hosts Events to Combat Food Insecurity
    Wednesday, September 17, 2025, By John Boccacino
  • Resistance Training May Improve Nerve Health, Slow Aging Process
    Wednesday, September 17, 2025, By Matt Michael
  • New Faculty Members Bring Expertise in Emerging Business Practices to the Whitman School
    Tuesday, September 16, 2025, By Dawn McWilliams
  • Partnership With Sony Electronics to Bring Leading-Edge Tech to Help Ready Students for Career Success
    Tuesday, September 16, 2025, By Genaro Armas
  • Art Museum Announces Charlotte Bingham ’27 as 2025-26 Luise and Morton Kaish Fellow
    Tuesday, September 16, 2025, By Taylor Westerlund

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.