Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Ammonium Fertilized Early Life on Earth

Tuesday, May 21, 2019, By News Staff
Share
College of Arts and SciencesDepartment of Earth Sciences

A team of international scientists—including researchers at the University of St. Andrews, Syracuse University and Royal Holloway, University of London—have demonstrated a new source of food for early life on the planet.

Life on Earth relies on the availability of critical elements such as nitrogen and phosphorus. These nutrient elements are ubiquitous to all life, as they are required for the formation of DNA, the blueprints of life, and proteins, the machinery. They are originally sourced from rocks and the atmosphere, so their availability to life has fluctuated alongside significant changes in the chemistry of Earth’s surface environments over geologic time.

The research, published in Nature Geoscience, reveals how the supply of these elements directly impacted the growth of Earth’s oxygen-rich atmosphere and were key to the evolution of early life on Earth.

Man with beard and glasses

Christopher Junium

The most dramatic change in Earth history followed the evolution of oxygenic photosynthesis, which fundamentally transformed the planet by providing a source of carbon to the biosphere and a source of oxygen to the atmosphere, the latter culminating in the Great Oxidation Event (GOE) some 2.3 billion years ago.

Despite the critical importance of nutrients to life, the availability of nitrogen and phosphorus in pre-GOE oceans is not well understood, particularly how the supply of these elements drove and/or responded to planetary oxygenation.

Using samples of exceptionally well-preserved rocks that have been associated with early evidence for oxygenic photosynthesis 2.7 billion year ago, the team of researchers examined Earth’s early nitrogen cycle to decipher feedbacks associated with the initial stages of planetary oxygenation.

“There is precious little rock available from this time interval that is suitable for the type of analyses we performed. Most rocks that are this old have been deformed and heated during 2.7 billion years of plate tectonic activity, rendering the original signals of life lost,” says Christopher Junium, associate professor of Earth sciences in the College of Arts and Sciences.

The rock samples showed the first direct evidence of the build-up of a large pool of ammonium in the pre-GOE oceans. This ammonium would have provided an ample source of nitrogen to fuel the early biosphere and associated oxygen production.

Research team leader Aubrey Zerkle, reader in the School of Earth and Environmental Sciences at the University of St Andrews, says: “Today we think of ammonium as the unpleasant odor in our cleaning supplies, but it would’ve served as an all-you-can-eat buffet for the first oxygen-generating organisms, a significant improvement on the dumpster scraps they relied on earlier in Earth’s history.”

As well as helping scientists better understand the role of the nitrogen cycle in global oxygenation, the new findings also provide context for other nutrient feedbacks during early planetary evolution.

“It is becoming ever more clear that the game of nutrient limitation has tipped back and forth through Earth’s history as life has evolved and as conditions have changed,” Junium says.

Surprisingly, evidence for significant atmospheric oxygenation does not appear until 400 million years later, meaning that some other nutrient, such as phosphorus, must have been important in setting the evolutionary pace.

This study was supported by Natural Environment Research Council Standard Grant NE/M001156/1 and by the U.S. National Science Foundation EAR-1455258.

  • Author

News Staff

  • Recent
  • Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives
    Tuesday, May 17, 2022, By News Staff
  • As the School of Education’s Italy Program Returns, Sara Jo Soldovieri ’18, G’19 Reflects on Its Influence
    Tuesday, May 17, 2022, By Martin Walls
  • Center for Fellowship and Scholarship Advising Team Helps Match Students With Unique Experiences That Enhance Their Studies
    Tuesday, May 17, 2022, By Jen Maser
  • COVID-19 Update: Public Health Protocols for Summer 2022
    Tuesday, May 17, 2022, By News Staff
  • New Law Scholarship Honors the Ongoing Legacy of the Hon. Theodore A. McKee L’75
    Tuesday, May 17, 2022, By Robert Conrad

More In STEM

Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives

In 1948, Professor James Hope Birnie became Syracuse University’s first African American faculty member in biology, teaching here until 1951. He was also one of its first biology faculty members to be supported by the National Institutes of Health (NIH)….

Black Hole Image Shows Einstein Was Right, Once Again

Today a team of astronomers announced they successfully captured the first direct image of the black hole at the center of the Milky Way galaxy. Duncan Brown is the Charles Brightman Endowed Professor of Physics at Syracuse University’s College of…

Biomedical and Chemical Engineering Professor’s Research Team Receives Multiple Awards at Society for Biomaterials Conference

Biomedical and chemical engineering Professor Mary Beth Monroe attended the Society for Biomaterials (SFB) 2022 meeting in Baltimore, Maryland, with Ph.D. students Anand Vakil, Henry Beaman, Changling Du and Maryam Ramezani, master’s student Natalie Petryk ’21, G’22 and undergraduate students Caitlyn…

Viewing a Microcosm Through a Physics Lens

“What can physics offer biology?” This was how Alison Patteson, assistant professor in the College of Arts and Sciences’ physics department and a faculty member in the BioInspired Institute, began the explanation of why her physics lab was studying bacteria. In…

University’s Top Putnam Math Competition Finisher Awarded Inaugural Erdős Prize

Junior Connor Ritchie has won the Department of Mathematics’ inaugural Erdős Prize for being Syracuse University’s top finisher in the William Lowell Putnam Mathematical Competition. The Putnam contest is the preeminent mathematics competition for undergraduate college students in the United States and Canada,…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.