Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Ammonium Fertilized Early Life on Earth

Tuesday, May 21, 2019, By News Staff
Share
College of Arts and Sciences

A team of international scientists—including researchers at the University of St. Andrews, Syracuse University and Royal Holloway, University of London—have demonstrated a new source of food for early life on the planet.

Life on Earth relies on the availability of critical elements such as nitrogen and phosphorus. These nutrient elements are ubiquitous to all life, as they are required for the formation of DNA, the blueprints of life, and proteins, the machinery. They are originally sourced from rocks and the atmosphere, so their availability to life has fluctuated alongside significant changes in the chemistry of Earth’s surface environments over geologic time.

The research, published in Nature Geoscience, reveals how the supply of these elements directly impacted the growth of Earth’s oxygen-rich atmosphere and were key to the evolution of early life on Earth.

Man with beard and glasses

Christopher Junium

The most dramatic change in Earth history followed the evolution of oxygenic photosynthesis, which fundamentally transformed the planet by providing a source of carbon to the biosphere and a source of oxygen to the atmosphere, the latter culminating in the Great Oxidation Event (GOE) some 2.3 billion years ago.

Despite the critical importance of nutrients to life, the availability of nitrogen and phosphorus in pre-GOE oceans is not well understood, particularly how the supply of these elements drove and/or responded to planetary oxygenation.

Using samples of exceptionally well-preserved rocks that have been associated with early evidence for oxygenic photosynthesis 2.7 billion year ago, the team of researchers examined Earth’s early nitrogen cycle to decipher feedbacks associated with the initial stages of planetary oxygenation.

“There is precious little rock available from this time interval that is suitable for the type of analyses we performed. Most rocks that are this old have been deformed and heated during 2.7 billion years of plate tectonic activity, rendering the original signals of life lost,” says Christopher Junium, associate professor of Earth sciences in the College of Arts and Sciences.

The rock samples showed the first direct evidence of the build-up of a large pool of ammonium in the pre-GOE oceans. This ammonium would have provided an ample source of nitrogen to fuel the early biosphere and associated oxygen production.

Research team leader Aubrey Zerkle, reader in the School of Earth and Environmental Sciences at the University of St Andrews, says: “Today we think of ammonium as the unpleasant odor in our cleaning supplies, but it would’ve served as an all-you-can-eat buffet for the first oxygen-generating organisms, a significant improvement on the dumpster scraps they relied on earlier in Earth’s history.”

As well as helping scientists better understand the role of the nitrogen cycle in global oxygenation, the new findings also provide context for other nutrient feedbacks during early planetary evolution.

“It is becoming ever more clear that the game of nutrient limitation has tipped back and forth through Earth’s history as life has evolved and as conditions have changed,” Junium says.

Surprisingly, evidence for significant atmospheric oxygenation does not appear until 400 million years later, meaning that some other nutrient, such as phosphorus, must have been important in setting the evolutionary pace.

This study was supported by Natural Environment Research Council Standard Grant NE/M001156/1 and by the U.S. National Science Foundation EAR-1455258.

  • Author

News Staff

  • Recent
  • Newhouse Creative Advertising Students Win Big at Sports and Entertainment Clios
    Friday, May 30, 2025, By News Staff
  • Syracuse University Libraries’ Information Literacy Scholars Produce Information Literacy Collab Journal
    Thursday, May 29, 2025, By Cristina Hatem
  • Syracuse Spirit on Display: Limited-Edition Poster Supports Future Generations
    Thursday, May 29, 2025, By News Staff
  • Timur Hammond’s ‘Placing Islam’ Receives Journal’s Honorable Mention
    Tuesday, May 27, 2025, By News Staff
  • Syracuse University, Lockerbie Academy Reimagine Partnership, Strengthen Bond
    Friday, May 23, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.