Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

NIH Awards Syracuse University Grant to Prevent Catheter-Associated Infections

Friday, March 8, 2019, By Matt Wheeler
Share
BioInspiredCollege of Engineering and Computer Science
Huan Gu and Dacheng Ren

Huan Gu and Dacheng Ren

Urinary catheters are commonly used during surgery and in patients who cannot otherwise control urination. Unfortunately, patients who need long-term catheterization tend to experience blockages and urinary tract infections caused by bacteria that cling to the catheter. Even patients that require short-term catheterization can be at risk. Catheter-associated urinary tract infections are one of the most common health care infections in the United States, according to the National Health and Safety Network. New research in the College of Engineering and Computer Science, led by Stevenson Endowed Professor Dacheng Ren, aims to prevent these infections by building a better catheter.

The research team—which includes Assistant Research Professor Huan Gu and SUNY Upstate Medical University Associate Professor and Reconstructive Urologist Dmitriy Nikolavsky—is designing a catheter that prevents biofilms from sticking to its surfaces. A biofilm is a slimy, complex layer of bacteria that holds together and adheres to surfaces inside or outside of the body.

Thanks to an Exploratory/Developmental Research Grant Award (R21) from the National Institute of Health (NIH), the team will engineer unique, non-fouling, catheter-based polydimethylsiloxane (PDMS) and then evaluate its biocompatibility and effectiveness in thwarting infections.

In the team’s design, the polymer surface will be engineered with moving micron-size pillars on the wall of the catheter that discourage bacterial biofilms from gaining a foothold on the surface.

Their prototype is made of PDMS, which is an FDA-approved polymer that is already widely used in catheters. In addition to incorporating the minuscule pillars into the design, they will employ methods to alter the topography of the catheter’s surfaces in ways that are proven to repel biofilms, such as changing the geometry of patterns using shape memory polymers as well as its stiffness.

The team has obtained promising results that such dynamic change in surface topography can remove more than 99.9 percent of biofilms of Pseudomonas aeruginosa, which are a common cause of infections acquired in hospitals.

Ren leads a well-established research program in biofilms. He studies the mechanisms of biofilm-associated resistance to antimicrobials, engineers smart surfaces and biomaterials to control microbial biofilm formation, and develops new strategies and inhibitors to kill biofilm and dormant bacterial cells more effectively. Given the strength of his ongoing body of work, this new application is a natural next step. And the science that is established with catheters today could be applied to a variety of materials and medical devices tomorrow.

“My team and I are incredibly grateful to the NIH to receive the funding to carry out this work,” Ren says. “This project will allow us to make more contributions to biofilm research that hopefully can benefit patients in the future.”

  • Author

Matt Wheeler

  • Recent
  • Turning Young Enthusiasts Into Scientific Researchers
    Friday, September 22, 2023, By Wendy S. Loughlin
  • Languages Unlock Opportunities for English for Lawyers Alumna
    Thursday, September 21, 2023, By Hope Alvarez
  • Fall 2023 Career Week: Helping Students Achieve Professional Goals
    Thursday, September 21, 2023, By Gabrielle Lake
  • A Commitment to Arts and Sciences Excellence
    Thursday, September 21, 2023, By Dan Bernardi
  • Center for Sustainable Community Solutions and Environmental Finance Center Announces New Director
    Thursday, September 21, 2023, By Alex Dunbar

More In STEM

Turning Young Enthusiasts Into Scientific Researchers

Miguel Guzman ’24, a native of Lima, Peru, is a senior biotechnology major in the College of Arts and Sciences with an entrepreneurship and emerging enterprises minor in the Whitman School of Management. His research centers on developing bio-enabled protein…

Center for Sustainable Community Solutions and Environmental Finance Center Announces New Director

The College of Engineering and Computer Science is pleased to announce the transition of Melissa Young into a new role as director of the Center for Sustainable Community Solutions-Environmental Finance Center (CSCS-EFC) at Syracuse University. CSCS-EFC is housed within the…

Civil and Environmental Engineering Professor Attends UN Session on Reducing Plastic Pollution

Civil and Environmental Engineering Professor Svetoslava Todorova attended the second session of the United Nations (UN) Intergovernmental Negotiations Committee on Plastics this summer in Paris, France. Todorova was invited as an academic expert based on her research on the environment,…

Experts Say Federal Agency or Global Organization Should Govern AI, New Survey Co-sponsored by Two University Institutes Finds

A new survey co-sponsored by two Syracuse University institutes finds that a majority of computer science experts at top U.S research universities want to see the creation of a new federal agency or global organization to govern artificial intelligence (AI)….

Q&A With School of Information Studies Dean Andrew Sears: Seeing Countless Opportunities in the Ever-Changing Tech World

In the rapidly changing world of technology, School of Information Studies Dean Andrew Sears knows it’s hard to predict how technology and the iSchool will evolve if you look too far into the future. But, he knows if you pay…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.