Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

New Material Developed at Syracuse University is a Biomedical Breakthrough

Monday, February 25, 2019, By Matt Wheeler
Share
BioInspiredCollege of Engineering and Computer Science
Professor James H. Henderson and Ph.D. candidate Shelby L. Buffington

Professor James H. Henderson and Ph.D. candidate Shelby L. Buffington

Researchers in the College of Engineering and Computer Science have developed a material—a new kind of shape memory polymer (SMP)—that could have major implications for health care.

SMPs are soft, rubbery, “smart” materials that can change shape in response to external stimuli like temperature changes or exposure to light. They can hold each shape indefinitely and turn back when triggered to do so.

SMPs have many potential biomedical applications. For example, they are ideal as cardiovascular stents because they can be one shape for surgical insertion and another once positioned in a blood vessel. The warmth of the patient’s body is all that is required to trigger the shape change.

Along with collaborators at Bucknell University, Syracuse University researchers have designed an SMP that can change its shape in response to exposure to enzymes and is compatible with living cells. It requires no additional trigger, such as a change in temperature. Given these properties, it can respond to cellular activity like healing.

“The enzymatic sensitivity of the material allows it to respond directly to cell behavior,” explains biomedical engineering Ph.D. candidate Shelby L. Buffington. “For instance, you could place it over a wound, and as the tissue remodeled and degraded it, the SMP would slowly pull the wound closed. It could be adapted to play a role in treating infections and cancer by adjusting the material’s chemistry.”

The research team includes Buffington, Justine E. Paul ’18, bioengineering junior Mark M. Macios, Professor James H. Henderson and Bucknell’s Patrick T. Mather and Matthew M. Ali Ph.D. ’18. Their research, “Enzymatically triggered shape memory polymers,” was published in Acta Biomaterialia in January.

The team created the material using a process called dual electrospinning, in which a high-voltage current is applied to two needle tips pumping two separate polymer solutions. The voltage draws out the polymer fibers, and they are blended into a fiber polymer mat. The proper combination of fibers gives the material its shape memory qualities.

Detailed in their paper, the teams analyzed the material’s properties, shape memory performance and cytocompatibility. Their experiments successfully demonstrated that the SMP’s original shape could be recovered through a degree of reversal, or degradation, of the shape-fixing phase.

Today, the research team is examining their SMP in cancer and macrophage cell cultures. They hope that with additional research, they will uncover practical uses for their material using lower concentrations of enzymes, produced by less extreme cellular activity.

“We anticipate that the materials we’re developing could have broad application in health care. For example, our SMPs could be used in drugs that only activate when the target cells or organ are in the desired physiological state, in scaffolds that guide tissue regeneration in response to the behavior of the regenerating tissue itself, and in decision-making biosensors that guide patient treatment more effectively,” Henderson says. “We’re very excited to have achieved these first enzymatically responsive SMPs.”

  • Author

Matt Wheeler

  • Recent
  • Rabbi Natan Levy Appointed Campus Rabbi for Syracuse Hillel and Jewish Chaplain at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • Imam Amir Durić Appointed Assistant Dean for Religious and Spiritual Life at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • College of Law’s Veterans Legal Clinic Receives Justice for Heroes Grant
    Tuesday, July 22, 2025, By Robert Conrad
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.