Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Applies Nanotechnology to Detect Protein-Protein Interactions

Monday, December 10, 2018, By Rob Enslin
Share
BioInspiredCollege of Arts and SciencesfacultyResearch and CreativeSTEM

A physicist in the College of Arts and Sciences hopes to improve cancer detection with a new and novel class of nanomaterials.

head shot

Liviu Movileanu

Liviu Movileanu, professor of physics, creates tiny sensors that detect, characterize and analyze protein-protein interactions (PPIs) in blood serum. Information from PPIs could be a boon to the biomedical industry, as researchers seek to nullify proteins that allow cancer cells to grow and spread.

Movileanu’s findings are the subject of a paper in Nature Biotechnology (Springer Nature, 2018), co-authored by Ph.D. student Avinash Kumar Thakur. The National Institutes of Health (NIH) has supported their work with a four-year, $1.17 million grant award.

“Detailed knowledge of the human genome has opened up a new frontier for the identification of many functional proteins involved in brief physical associations with other proteins,” Movileanu says. “Major perturbations in the strength of these PPIs lead to disease conditions. Because of the transient nature of these interactions, new methods are needed to assess them.”

Enter Movileanu’s lab, which designs, creates and optimizes a unique class of biophysical tools called nanobiosensors. These highly sensitive, pore-based tools detect mechanistic processes, such as PPIs, at the single-molecule level.

Even though PPIs occur everywhere in the human body, they are hard to detect with existing methods because they (i.e., the PPIs affecting cell signaling and cancer development) last about a millisecond.

Movileanu’s response has been to create a hole in the cell membrane—an aperture known as a nanopore—through which he shoots an electric current. When proteins go near or through the nanopore, the intensity of the current changes. The changes enable him to determine each protein’s properties and ultimately its identity.

The concept is not new—it was first articulated in the 1980s—but only recently have scientists begun fabricating and characterizing nanobiosensors on a large scale to detect DNA, sugars, explosives, toxins and other nanoscale materials.

Movileanu hopes his real-time techniques will detect cancers before they spread.

One type of cancer in which he is particularly interested is lymphocytic leukemia, a common and aggressive disease that starts in the bone marrow and spills into the blood. Because leukemia cells do not mature and die properly, they often spiral out of control.

“Leukemia cells build up in the bone marrow and crowd out normal, healthy cells,” Movileanu explains. “Unlike other cancers, which usually start in the breasts, colon or lungs [and spread to the bone marrow], lymphocytic leukemia originates in the lymph nodes, hence the name.”

Over the summer, he received another four-year grant from NIH—his third million-dollar one to date—to build nanobiosensors. This project involves colleagues at SUNY Upstate Medical University, led by Michael Cosgrove G’93, G’98, associate professor of biochemistry and molecular biology.

graphic of proteins

A digital illustration of a cancer cell undergoing mitosis (Christoph Burgstedt/Shutterstock.com)

Movileanu’s projects are part of a burgeoning field called interactomics, which uses experimental and computational techniques to study interactions—and the consequences of those interactions—between proteins.

“The data gleaned from a single protein sample is immense,” says Movileanu, a member of the Biophysics and Biomaterials research group in the Department of Physics. “Our nanostructures allow us to observe biochemical events in a sensitive, specific and quantitative manner. Afterward, we can make a solid assessment about a single protein sample.”

As for the future, Movileanu wants to study PPIs in more complex biological samples, such as cell lysates (fluid containing “crumbled” cells) and tissue biopsies.

“If we know how individual parts of a cell function, we can figure out why a cell deviates from normal functionality toward a tumor-like state,” says Movileanu, who earned a Ph.D. in experimental physics from the University of Bucharest in Romania. “Our little sensors may do big things for biomarker screening, protein profiling and the large-scale study of proteins [known as proteomics].”

In June, Movileanu presented at the first Northeast Nanomaterials Meeting of the American Chemical Society (ACS)’s Northern New York Section, held in Lake Placid. He has since reprised his ACS talk at Brown and Clarkson universities and at the 15th annual International Conference on Flow Dynamics in Sendai, Japan.

  • Author

Rob Enslin

  • Recent
  • Oren Lyons Jr., Roy Simmons Jr. Honored With Alfie Jacques Ambassador Award
    Wednesday, June 11, 2025, By John Boccacino
  • Deadline Set for Fiscal 2025 Year End Business
    Monday, June 9, 2025, By News Staff
  • The Libraries’ Resources: A Staff and Faculty Benefit
    Monday, June 9, 2025, By News Staff
  • Forecasting the Future With Fossils
    Sunday, June 8, 2025, By Caroline K. Reff
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha

More In STEM

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.