Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist’s Discovery Recasts ‘Lifetime Hierarchy’ of Subatomic Particles

Monday, October 1, 2018, By Rob Enslin
Share
College of Arts and SciencesfacultyPhysicsResearch and Creative
head shot

Steven Blusk

Researchers in the College of Arts and Sciences have determined that the lifetime of the so-called charmed omega—part of a family of subatomic particles called baryons—is nearly four times longer than previously thought.

In an article in Physical Review Letters (American Physical Society, 2018), Steven Blusk, professor of physics, explains that the new measurement is based on proton-proton collision data from the Large Hadron Collider beauty (LHCb) experiment at the CERN physics laboratory in Geneva, Switzerland.

Blusk and his colleagues found that after analyzing collision data from nearly a thousand charmed-omega decays, the particle’s lifetime is 268 femtoseconds. A femtosecond is a millionth of a billionth of a second, or 0.000000000000001 seconds.

“Theoretical predictions about the lifetimes of exotic particles often favor a particular order,” says Blusk, the article’s lead author. “Theories predict that the charmed-omega baryon likely has the lowest lifetime of the bunch. But predictions are made to be tested, right?”

computer-generated image

A proton-proton collision detected by LHCb earlier this year. (Image: CERN)

That the lifetime of the charmed omega is not as short as scientists thought it was “substantially jumbles” the lifetime hierarchy of multiple particles. “It also suggests that corrections need to be made to our theoretical predictions,” Blusk adds.

Scientists agree that everything in the universe comes from two groups of elementary particles: quarks and leptons. Unlike leptons, which are solitary in nature (e.g., electrons), quarks combine to form composite particles called hadrons.There are different kinds of hadrons, the most common of which are mesons (containing two quarks) and baryons (with three quarks). These quarks come in six species, or flavors, and have unusual names: up, down, strange, charm, beauty and top.Blusk studies beauty and charmed quarks, which are hundreds of times more massive than their up and down counterparts. It is for this reason that both are considered “heavy.”

“Heavy quarks rapidly change into up and down quarks through particle decay, in which they go from a higher mass state to a lower one,” Blusk continues. “By producing and studying heavy quarks in abundance in high-energy collisions [using particle accelerators], we gain insight into the fundamental forces of nature.”

Enter Syracuse’s High-Energy Physics (HEP) Group, of which Blusk is a member. He and his HEP colleagues split time between Syracuse—where they design, build and test detection hardware—and CERN, where they carry out experiments.

It is at the Large Hadron Collider—the biggest, most powerful particle accelerator in the world—that beams of protons are hurled at one another, close to the speed of light. Blusk and other scientists from around the world comb the ensuing debris for clues to new or yet-to-be-detected forces in the universe.

Blusk says the detritus enables him to not only analyze particle decays, but also measure the lifetimes of charmed mesons and baryons. “It is one example of the many types of measurements that are performed at CERN,” he says.

Such data also helps scientists test models of quantum chromodynamics (QCD), a theory describing the atomic nucleus and particles within it. QCD focuses on quarks and gluons, which are the building blocks of protons and neutrons, which, in turn, form atoms.

The theory also explains how gluons hold quarks together.

“All this information helps us seek a deeper, more complete theory of the universe,” Blusk says.

The lifetime of the charmed omega was last measured nearly two decades ago, but involved much smaller data samples. The average of the values measured by those experiments was approximately 69 femtoseconds—four times lower than Blusk’s value.

None of the measurements, including his, contradicts the range of theoretical estimates of the charmed omega’s lifetime, which spans from 60 to 520 femtoseconds.

Blusk says that, because of the discrepancy, additional measurements need to be made. Moreover, theoreticians are beginning to take a closer look at their QCD calculations and predictions.

“It is quite rare and exciting to find such a long-accepted measurement challenged by a new one. We look forward to this result spurring more precise QCD calculations of various quantities, which, in turn, will improve the theoretical predictions for the lifetimes of charmed baryons,” Blusk adds.

 

  • Author

Rob Enslin

  • Recent
  • Calling All Alumni Entrepreneurs: Apply for ’CUSE50 Awards
    Tuesday, June 24, 2025, By John Boccacino
  • Swinging Into Summer: Syracuse International Jazz Fest Returns With Star Power, Student Talent and a Soulful Campus Finale
    Tuesday, June 24, 2025, By Kathleen Haley
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • Retiring University Professor and Decorated Public Servant Sean O’Keefe G’78 Reflects on a Legacy of Service
    Tuesday, June 24, 2025, By John Boccacino
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.