Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicists Win NSF Grant to Probe Prospects for Next-Generation Gravitational-wave Detectors

Monday, August 27, 2018, By Carol Boll
Share
College of Arts and SciencesfacultyResearch and Creative

Two Syracuse University physicists are among the recipients of a $2.1 million National Science Foundation award to analyze the potential for developing third-generation global gravitational-wave detectors. These detectors would expand scientists’ capacity to monitor cosmic activity to the outer edges of the universe.

Head shot

Stefan Ballmer

Stefan Ballmer, associate professor of physics at the College of Arts and Sciences, and Duncan Brown, the Charles Brightman Endowed Professor of Physics in the College of Arts and Sciences, are principal and co-principal investigators, respectively, for Syracuse University’s $240,006  portion of the collaborative project, titled “Collaborative Research: The Next Generation of Gravitational Wave Detectors.”

In addition to Syracuse, the project’s core research team will include members from Massachusetts Institute of Technology, Pennsylvania State University, California State University Fullerton and California Institute of Technology, each of which received a portion of the $2.1 million funding award. The project will drive U.S. participation in an already-underway international effort to develop a third-generation gravitational-wave network and support the U.S. role in planning the future of gravitational-wave astronomy.

“Every year in the universe, hundreds of thousands of black holes collide,” says Ballmer. “That’s one collision every five minutes. Three years ago we observed our very first black-hole collision. This award will help us design a detector that will observe all of the collisions happening in the universe. This is the first step toward building observatories that can map the dark side of the universe and understand the structure that we see today.”

Head shot

Duncan Brown

Both Ballmer and Brown are part of the Gravitational Wave Group in the Department of Physics, based in the College of Arts and Sciences. They were part of the international team of scientists who made worldwide headlines in 2015 with the first observation of gravitational waves—a discovery that confirmed a major piece of Albert Einstein’s theory of general relativity—and again in 2017 with the observation of gravitational waves emanating from the collision of two massive neutron stars in deep space. The new research project will build on the promise of those two breakthroughs, which opened wide the field of gravitational-wave science and expanded scientists’ capacity to find in deep space answers to some longstanding questions about the workings of the universe.

Both discoveries were made by the second-generation Laser Interferometer Gravitational Observatory (LIGO) with detectors that survey only a small fraction of the universe. The enhanced sensitivity of third-generation detectors will allow scientists to survey the entire universe, providing answers to questions of broad interest in astrophysics, cosmology, fundamental physics and nuclear physics.

“The scientific potential of next-generation gravitational-wave detectors is astonishing,” says Brown. “The neutron star collision we saw just over one year ago led to a huge leap in our understanding of evolution of stars and the formation of heavy metals like gold. With these new detectors, we expect to see events like this every day—and surprises that we haven’t thought of yet.”

Students and postdoctoral candidates from Syracuse and the other partnering universities will take part in the research work as well.

The project is funded for three years, at the end of which the research team will deliver to the National Science Foundation an analysis of the scientific potential of third-generation detector networks and the prospects for detectors and facilities required to build such a network. The analysis will be a key resource for the global community and funding agencies when designing and building third-generation observatories.

  • Author

Carol Boll

  • Recent
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • Whitman’s Johan Wiklund Named a Top Scholar Globally for Business Research Publications
    Tuesday, June 17, 2025, By Caroline K. Reff
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • On Your Mark, Get Set, Go Orange! Faculty and Staff at the Syracuse WorkForce Run (Gallery)
    Thursday, June 12, 2025, By News Staff
  • Oren Lyons Jr., Roy Simmons Jr. Honored With Alfie Jacques Ambassador Award
    Wednesday, June 11, 2025, By John Boccacino

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.