Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Maroo Awarded Grant to Cool Off Electronic Devices

Wednesday, August 15, 2018, By News Staff
Share
College of Engineering and Computer SciencefacultyresearchSTEM

Anyone who has ever felt their laptop toast their lap or their smartphone suddenly become a hot potato in their hands can understand that electronics need a way to stay cool.

The more powerful our devices become, the more heat they generate. In fact, certain bleeding edge electronics are so reliant on cooling that they would stop working without it.

To continue to produce more powerful electronics, there needs to be a significant advance in how we keep them cool. And, we’re running out of practical cooling solutions needed to develop next-generation electronic devices.

This summer, Associate Professor Shalabh Maroo  in the College of Engineering and Computer Science received a $500,000 grant from Office of Naval Research to conduct new research on exactly that.

Q. Why do laptops and phones get so hot?

A. No electronic device can be 100 percent efficient. It isn’t physically possible. Take smartphones for example. We cannot convert all of the battery’s electrical energy into powering the phone. The extra energy becomes heat. Hence, all electronic devices become hot and we need a way to remove that heat.

Q. Why is thermal management so crucial to developing new technology?

A. With new fabrication technology, billions of transistors can be built into a single chip processor. That creates a tremendous amount of heat during operation. New tech will generate more heat than it can withstand.

In this work, the size of a processor’s surface area becomes very important. Certain powerful new processors generate as much as 10 watts of heat per square-centimeter of area. That may seem small, but it is a big deal by comparison. A clothes iron generates just 5 watts of heat per square-centimeter of area and reaches a surface temperature of over 400 degrees Fahrenheit. Further, very localized spots in the processor can even generate heat over 100 or 1,000 watts per square-centimeter of area.

Plus, we want to make our processors smaller and smaller. Removing 10 or 100 or 1,000 watts of heat from a square-centimeter of area is far more challenging than removing the same amount of heat from a square-meter of area. Advancements in cooling techniques are thus essential.

Q. What is your approach with your research, Phase Change in High-Density Confined Liquids for Thermal Management?

A. Our research aims to understand and develop a thermal technology which can provide cooling of more than 1,000 watts per square-centimeter of area while also keeping the device’s temperature within an operational range. The fundamental research aims to investigate phase change heat transfer in liquid-filled small-sized micro/nano channels using experiments, molecular dynamics simulations, and continuum simulations.

Such a cooling technology could possibly assist in the development of terahertz processors which could be 1,000 times faster than the current gigahertz processors.

Q. This is a significant amount of funding. How does this fit into your lab’s mission?

A. We are very excited! The research contributions of An Zou, a research assistant professor, and Manish Gupta, a mechanical engineering Ph.D. student, helped bring this grant to our lab. Together, we aim to understand the fundamentals of phase change heat transfer in small channels through this research work. We hope our work will shape the development of a cooling technology which can significantly advance thermal management of electronics.

  • Author

News Staff

  • Recent
  • Call to Volunteer: Give Back at The Big Event
    Monday, April 19, 2021, By News Staff
  • Fusion of Art and Science Leads to Discovery
    Monday, April 19, 2021, By Ellen de Graffenreid
  • Architecture Instructor Wins 2021 Ragdale Ring Competition
    Monday, April 19, 2021, By Julie Sharkey
  • Dining Centers to Resume In-Person Dining Monday, April 19, at 11 a.m.
    Sunday, April 18, 2021, By News Staff
  • Libraries Receive Two Access and Digitization Grants
    Sunday, April 18, 2021, By Cristina Hatem

More In STEM

Fusion of Art and Science Leads to Discovery

Robert Wysocki arrived at Syracuse University in 2008, having made a name in the art world by capturing landscapes in three dimensions. Known for large sand sculptures showcased in galleries from Los Angeles to Florida, Wysocki’s inspiration began on a…

Bioengineering Ph.D. Student Receives National Recognition for Breakthrough Molecular Computational Tool

Nandhini Rajagopal’s accomplishments are massive even though her research focuses on small molecules. As part of biomedical and chemical engineering Professor Shikha Nangia’s research group, the Ph.D. student has focused her work on minute interactions between protein molecules in the…

New Study From Department of Biology Highlights Ways to Support Students in Virtual Learning Environments

The mass migration to virtual learning that resulted from the COVID-19 pandemic led to a profound change in student learning. While it presented many challenges, it also created opportunities for documenting responses. Two researchers from the Department of Biology in…

Research Computing: A Decade of Discovery on Campus

Do you need more computing power to move your work forward? Since 2011, the Research Computing team within Information Technology Services (ITS) has helped faculty and staff tackle computational challenges beyond the capabilities of a normal desktop or laptop computer. Each…

Engineering Professor Shobha Bhatia Receives 2021 Judith Greenberg Seinfeld Scholar Award

Civil and Environmental Engineering Professor Shobha Bhatia has been honored by Chancellor Kent Syverud with a 2021 Judith Greenberg Seinfeld Scholar award. The award recognizes exceptional creativity and a passion for excellence. It provides $10,000 for Bhatia to undertake an…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.