Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biologists Awarded NIH Grant to Study Origins of Brain Disorders

Wednesday, June 13, 2018, By Rob Enslin
Share
BioInspiredCollege of Arts and SciencesgrantResearch and CreativeSTEM
woman standing in laboratory

Sandra Hewett

Neuroscientists in the Department of Biology in the College of Arts and Sciences (A&S) are using a major grant to study the origins of brain disorders, including epilepsy and stroke.

Sandra Hewett, the Beverly Petterson Bishop Professor of Neuroscience and professor of biology, is the principal investigator of a five-year, $1.7 million grant award from the National Institutes of Health’s National Institute of Neurological Disorders and Stroke.

Hewett will use the award to research the physiological mechanisms governing excitatory and inhibitory (E/I) balance in the brain. Her project is part of a larger, nationwide effort targeting and treating E/I imbalances in neurological disorders.

Central to Hewett’s study are neurotransmitters, chemical messengers that send information from one nerve cell (or neuron) to another. Neurotransmitters are excitatory or inhibitory, but work together to affect a variety of physiological functions.

“A brain disorder is the result of an imbalance between these neurotransmitters,” says Hewett, who primarily studies the causes of cell death in the central nervous system. “To develop therapeutic targets for disease states caused by E/I imbalance, we must first understand the cellular and molecular processes that underlie normal, physiological transmission.”

Hewett will focus on the cysteine-glutamate transporter, a protein system th

man standing in front of shelves

James Hewett

at, among other things, maintains glutamate levels in the brain. Glutamate is an excitatory neurotransmitter that enables the brain to function properly.

“Too much excitation [in neurons] can lead to seizures, which are characteristic of epilepsy, or to frank neuronal cell death, which occurs in stroke,” says Hewett, who, as executive director of Neuroscience Studies in A&S, oversees both the Neuroscience Integrated Learning Major and the Neuroscience Graduate Concentration.

She will conduct research with members of her lab and with James Hewett, associate professor of biology and neuroscience, who is the project’s co-investigator.

James explains that the human brain is home to more than 80 billion neurons, each connected to tens of thousands of other cells. “That’s more than a thousand trillion connections in the brain alone,” he continues. “Everything our body does stems from these neurons, which process and transmit information through chemical and electrical signals.”

In addition to billions of neurons, the human brain contains 10 times as many non-neuronal cells called glia. There are different types of glia, including astrocytes, which are star-shaped cells surrounding neurons in the brain and spinal cord.

graphic

The neurovascular unit consists of neurons (yellow), blood vessels that supply them (pink), astrocytes (blue) and possibly other types of glial cells (green). (Courtesy of NIH)

The Hewetts are interested in how astrocytes create finely controlled environments for complex operations to occur. They suspect changes in the astrocytic system (known as system xc–) affect E/I balance.

“We hope to reveal how system xc– affects homeostasis in the brain,” Sandra says. “Our team will test the hypothesis that the chronic loss of the cystine-glutamate transporter leads to a scaling up of glutamate receptors under basal conditions, whereas scaling down occurs under conditions of enhanced neuronal activity—both in attempt to stabilize neuronal firing. To do this, we will use state-of-the-art in vivo sensor technology, along with various cellular, molecular and pharmacological approaches.”

Hewett says she looks forward to working with an outstanding team of investigators, whose rigorous, well-planned approach already has produced exciting preliminary findings.

“Our results will contribute to a better understanding of the role of astrocytes in the maintenance of I/E balance, thus elevating the study of synaptic imbalance,” she adds.

  • Author

Rob Enslin

  • Recent
  • How New Words Enter Our Language: A Linguistics Expert Explains
    Friday, July 25, 2025, By Jen Plummer
  • Impact Players: Sport Analytics Students Help Influence UFL Rules and Strategy
    Friday, July 25, 2025, By Matt Michael
  • Bringing History to Life: How Larry Swiader ’89, G’93 Blends Storytelling With Emerging Technology
    Friday, July 25, 2025, By News Staff
  • Mihm Recognized for Fostering ‘Excellence in Public Service for the Next Generation’
    Wednesday, July 23, 2025, By Jessica Youngman
  • Oh, the Places You’ll Go! Celebrating Recent High School Grads
    Monday, July 21, 2025, By News Staff

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.