Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Seeks Big Answers from Tiny Particles

Monday, November 20, 2017, By Renée K. Gadoua
Share
College of Arts and SciencesfacultyresearchSTEM

A large National Science Foundation (NSF) grant allows Mitchell Soderberg, associate professor of physics in the College of Arts and Sciences, to lead a team researching particle physics in the ongoing quest to explain how the universe works.

Mitch Soderberg

Mitch Soderberg

Soderberg’s research involves measuring how neutrinos–subatomic particles with no electric charge–change from one type to another. The experiments he is involved with are central to moving the understanding of physics beyond the Standard Model–the 1970s theory of fundamental particles and how they interact.

The three-year $858,000 award funds work on experimental particle physics in Liquid Argon Time Projection Chambers (LArTPC) technology, and continues Soderberg and his group members’ involvement on several experiments, including the MicroBooNE experiment at Fermi National Accelerator Laboratory (Fermilab) near Chicago. The technology can record three-dimensional images of particle trajectories.

The 2017 NSF grant is the fourth NSF grant Soderberg has received at Syracuse; all fund his group’s involvement in the Fermilab neutrino program.

Soderberg leads a team of University researchers involved with MicroBooNE, a multinational project also known as Micro Booster Neutrino Experiment. In October 2015, the group of more than 100 scientists observed MicroBooNE’s first neutrino interaction. Soderberg’s team also helped build the MicroBooNE detector at Fermilab.

DUNE experiment

DUNE experiment, which will feature a giant TPC, located 1-mile underground in an old gold-mine in South Dakota, receiving a neutrino beam that originates from Fermilab.

Soderberg has worked since 2006 on developing LArTPCs to study neutrinos, including a role with the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF). He and Assistant Professor Denver Whittington are already working on the design details of LBNF/DUNE, which had a groundbreaking ceremony on July 21 at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. When completed around 2027, LBNF/DUNE will be the nation’s largest experiment devoted to the study of neutrino properties.

This grant will primarily fund salaries of Soderberg’s group, which includes four graduate students (two based at Fermilab and two at Syracuse) and one postdoctoral researcher (based at Fermilab), and two undergraduates working on projects at Syracuse. The grant will also allow Soderberg to hire a postdoctoral researcher to work on a project based at CERN, the European Organization for Nuclear Research.

Sense wires

Syracuse group members manufactured 3000+ sense wires, that are barely visible in the foreground of this object, here at SU. The machine shop at SU also manufactured a lot of the metal pieces that make up the MicroBooNE Time Projection Chamber structure in this image.

Soderberg’s neutrino experiments, like the groundbreaking gravitational waves research Syracuse physicists are working on, use large computing resources, develop custom detection techniques and work in huge international collaborations with scientists from all over the globe. Syracuse University physicists were among the global team that recently observed the collision of two neutron stars that confirm the origins of heavy metals like gold and platinum.

“Existing neutrino experiments did not see anything associated with this discovery, which was a bit disappointing,” Soderberg says. “It is possible that certain kinds of astrophysical events, like the neutron star merger that LIGO [the Laser Interferometer Gravitational-Wave Observatory] just discovered, would also produce a burst of neutrinos that could be detected by large neutrino experiments such as DUNE.”

The new grant supports the group’s research, which will make interesting physics measurements and test new hardware techniques for future experiments. The research could, for example, inform cosmology by providing “some insight into how the universe came to be dominated by matter,” he explains.

“The development of detector technology to study neutrinos is interesting in its own right, and perhaps will have applications in other realms of physics or industry down the road,” Soderberg says.

  • Author

Renée K. Gadoua

  • Recent
  • Funding Opportunities for Syracuse Abroad Summer 2021 programs
    Wednesday, January 20, 2021, By Ashley Alessandrini
  • College of Law Adds Vincent H. Cohen ’92, L’95 to Board of Advisors
    Wednesday, January 20, 2021, By Martin Walls
  • Students Invited to Network and Skill-Build with Alumni
    Wednesday, January 20, 2021, By Gabrielle Lake
  • ‘Confronting ‘Who We Are”
    Tuesday, January 19, 2021, By News Staff
  • Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado
    Tuesday, January 19, 2021, By Dan Bernardi

More In STEM

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

$1.5 Million NIH Grant Funds ALS-Linked Research

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.