Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Researchers Combine Experimentation, Simulation to Understand Chronic Infections

Thursday, November 2, 2017, By Matt Wheeler
Share
College of Engineering and Computer SciencefacultyResearch and CreativeSTEM

People who suffer from chronic infections, such as Lyme disease, are forced to resign themselves to the fact that they will live with the disease for the rest of their lives. Researchers in the College of Engineering and Computer Science are taking steps to better understand these kinds of infections and contribute to the science that may one day lead to a cure.

disease cells

Disease cells as they might appear under a microscope

Chronic infections can be treated, but never completely defeated because they form something called persister cells in the human body. These types of cells are difficult to combat because of their ability to enter dormancy. They essentially go to sleep, and while they are in that state, antibiotics are useless against them. When persister cells reactivate, or wake up, the infection rages in the body once again. When active, they become vulnerable to antibiotics. However, no matter how many active cells are killed, if dormant cells remain, so does the disease.

The scientific community is making progress to uncover the physiology of these bacteria and to develop new strategies to fight them. Unfortunately, studying persistence in bacterial biofilms is a big challenge because of the random factors that cause persister formation and variations in the level of persistence between experiments.

A collaborative team led by Professor Dacheng Ren and Assistant Professor Shikha Nangia is developing an experimental system that can control the formation of persister cells and “wake up” dormant cells in biofilms using synthetic biology. Their experimental system will manipulate persistence by tuning the level of toxin and antitoxin genes within the cells, and they will monitor the results for persister formation and “wake up” in real-time. They will also use computational simulation to quantitatively understand the persistence and antibiotic penetration into complex structures and cells. Recently, the team was awarded $330,000 by the National Science Foundation to continue their collaborative work on this topic.

Ren says, “We understand what’s happening, but we’re missing the technology to target these cells. This is fundamental work that will ultimately help us develop drugs to control and hopefully defeat the cells that cause chronic infections.”

For additional details on this work, check out the award abstract on the NSF’s website.

  • Author

Matt Wheeler

  • Recent
  • Auxiliary Services Announces Next Steps in Office Refreshment, Vending Transitions
    Thursday, August 14, 2025, By Jennifer DeMarchi
  • Whitman School Names Julie Niederhoff as Chair of Marketing Department
    Wednesday, August 13, 2025, By Caroline K. Reff
  • Syracuse Stage Announces Auditions for 2025-26 Theatre for the Very Young Production ‘Tiny Martians, Big Emotions’
    Wednesday, August 13, 2025, By Joanna Penalva
  • 5 Things to Know About New Student Convocation Speaker Andrea-Rose Oates ’26
    Wednesday, August 13, 2025, By John Boccacino
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.