Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Researchers Combine Experimentation, Simulation to Understand Chronic Infections

Thursday, November 2, 2017, By Matt Wheeler
Share
College of Engineering and Computer SciencefacultyResearch and CreativeSTEM

People who suffer from chronic infections, such as Lyme disease, are forced to resign themselves to the fact that they will live with the disease for the rest of their lives. Researchers in the College of Engineering and Computer Science are taking steps to better understand these kinds of infections and contribute to the science that may one day lead to a cure.

disease cells

Disease cells as they might appear under a microscope

Chronic infections can be treated, but never completely defeated because they form something called persister cells in the human body. These types of cells are difficult to combat because of their ability to enter dormancy. They essentially go to sleep, and while they are in that state, antibiotics are useless against them. When persister cells reactivate, or wake up, the infection rages in the body once again. When active, they become vulnerable to antibiotics. However, no matter how many active cells are killed, if dormant cells remain, so does the disease.

The scientific community is making progress to uncover the physiology of these bacteria and to develop new strategies to fight them. Unfortunately, studying persistence in bacterial biofilms is a big challenge because of the random factors that cause persister formation and variations in the level of persistence between experiments.

A collaborative team led by Professor Dacheng Ren and Assistant Professor Shikha Nangia is developing an experimental system that can control the formation of persister cells and “wake up” dormant cells in biofilms using synthetic biology. Their experimental system will manipulate persistence by tuning the level of toxin and antitoxin genes within the cells, and they will monitor the results for persister formation and “wake up” in real-time. They will also use computational simulation to quantitatively understand the persistence and antibiotic penetration into complex structures and cells. Recently, the team was awarded $330,000 by the National Science Foundation to continue their collaborative work on this topic.

Ren says, “We understand what’s happening, but we’re missing the technology to target these cells. This is fundamental work that will ultimately help us develop drugs to control and hopefully defeat the cells that cause chronic infections.”

For additional details on this work, check out the award abstract on the NSF’s website.

  • Author

Matt Wheeler

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.