Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biochemists Link Synthetic Compound to Hunger-Hormone Production

Thursday, July 27, 2017, By Elizabeth Droge-Young
Share
College of Arts and SciencesfacultyResearch and CreativeSTEMStudents

New research suggests that a man-made cousin of a small molecule found in olive oil can disrupt the hunger-signaling pathway. Researchers identified this promising new target by screening a library of roughly 1,600 small molecules for potential disruptors. Because the small molecule could influence how the body senses and utilizes energy, it has the potential to be developed into a treatment for conditions that affect energy balance, like diabetes and obesity.

James Hougland

James Hougland

“Given the hunger signaling pathway’s suggested role in metabolism control, molecules that control signaling may provide new avenues for treating diabetes, obesity and other conditions linked to the body’s intake and use of energy,” says James Hougland, associate professor of chemistry in the College of Arts and Sciences and the study’s corresponding author.

The research was published online in Biochemistry earlier this year. Its authors include John Chisholm, professor of chemistry; Kayleigh McGovern-Gooch, Ph.D. candidate and lead author; Nivedita Mahajani, Ph.D. candidate; Michelle Sieburg, Hougland lab manager; Anthony Schramm ’16; Lauren G. Hannah ’17; and Ariana Garagozzo, an undergraduate summer research intern from Dickinson College.

The Hougland lab researches ghrelin, a hormone involved in hunger signaling and metabolic activity. Ghrelin plays a role in “the balance between taking in energy, as calories from food, and using that energy to support life,” Hougland says.

Ghrelin is produced in the gastrointestinal tract and transported to the hypothalamus in the brain via the bloodstream, where it signals hunger. Ghrelin levels drop after eating to turn off the impulse to consume more.

There are a number of steps that lead to production of ghrelin—and the small molecule identified in this study could halt one. An enzyme called ghrelin O-acyltransferase, or GOAT, plays a crucial role in creating active ghrelin. GOAT acts by sticking a fatty acid onto ghrelin, which is an essential modification for ghrelin to control biological signaling.

The promising molecule identified in this study is a synthetic triterpenoid, a class of molecules naturally made by plants, which includes cholesterol. This particular molecule is a highly modified version of oleanolic acid, which naturally occurs in olive oil, garlic and other plants.

Prior to this study, all known GOAT inhibitors resembled part of acylated ghrelin, and only one had shown the ability to inhibit GOAT within cells or in animals. To find the synthetic triterpenoid identified in this paper, the authors ran 50 enzyme assays a day, working through the Diversity Set IV from the Developmental Therapeutics Program—a library containing roughly 1,600 small molecules.

“We wanted to cast our molecular net as wide as possible to look for potential inhibitor candidates,” Hougland explains.

The small molecule identified in the study prevents an eight-carbon fatty acid from being added to the ghrelin precursor proghrelin, which should stop the whole pathway in its tracks. The chemical structure of the small molecule suggests it interacts with sulfur atoms in GOAT. The sulfur atoms are part of cysteine amino acids, a standard building block of proteins. Guided by the small molecule inhibitor, Hougland and coworkers used a range of chemical probes to confirm that cysteine modification can block GOAT modification of ghrelin.

Because there are multiple cysteines in GOAT, Hougland is currently searching for the specific one affected by the inhibitory small molecule. Identifying the right player will bring the researchers one step closer to understanding how GOAT modifies ghrelin, which is essential for developing potent inhibitors of this process. Hougland is currently working with collaborators at Syracuse and other universities to develop promising lab findings into potential therapeutics.

“Our study suggests a new potential mechanism for GOAT inhibition,” Hougland says. “More broadly, our results demonstrate the ability of basic research to provide new and exciting insights into how molecules may be interacting with our bodies.”

This work was funded by the American Diabetes Association, the March of Dimes, the Foundation for Prader Willi Research (FPWR) and the National Institutes of Health.

  • Author

Elizabeth Droge-Young

  • Recent
  • Scott Warren Promoted to Senior Associate Dean for Research Excellence at Libraries
    Wednesday, June 7, 2023, By Cristina Hatem
  • Syracuse University Professor Calls for Proper Treatment for Clergy Sex Abuse Victims
    Wednesday, June 7, 2023, By Keith Kobland
  • Vice Chancellor Haynie and IVMF Advisory Board Members Recognized as Nation’s Finest 50
    Wednesday, June 7, 2023, By Stephanie Salanger
  • ‘There’s No Safe Place from Wildfire Smoke’ says Maxwell Environment Professor
    Wednesday, June 7, 2023, By Daryl Lovell
  • Ana Caliz Casanova Joins Libraries  as Monograph Cataloging Librarian
    Tuesday, June 6, 2023, By Cristina Hatem

More In STEM

Mechanical Engineering Student Ruohan Xu Receives Norma Slepecky Undergraduate Research Prize

Recent mechanical engineering and applied mathematics graduate Ruohan Xu ’23, G’24, has received the Norma Slepecky Undergraduate Prize for his research activities. Xu received the award from the Women in Science and Engineering Review Committee and was nominated by his…

Civil and Environmental Engineering Professor Sam Clemence to Receive Deep Foundations Institute Legends Award

The Deep Foundations Institute (DFI) and the DFI Educational Trust Legends Committee has chosen Civil and Environmental Engineering Professor Sam Clemence as a recipient of one of the DFI Legends Awards for 2023. This award was established to honor practitioners…

Physics and Mathematics Major Chance Baggett ’24 Named an Astronaut Scholar

Chance Baggett, a rising senior in the College of Arts and Sciences studying physics and mathematics and a member of the Renée Crown University Honors Program, has been named a 2023-24 Astronaut Scholar by the Astronaut Scholarship Foundation (ASF). Founded…

Aphasia Research Lab Seeks Participants for Stroke Treatment Study

Strokes affect nearly 800,000 individuals in the United States each year. To bring attention to the risk factors for strokes and how to prevent them, the National Stroke Association holds Stroke Awareness Month during the month of May. Those who…

Syracuse Center of Excellence Announces New Co-Chairs of Industry Partners Council

The Syracuse Center of Excellence in Environmental and Energy Systems at Syracuse University (SyracuseCoE) is proud to announce the appointment of Yu Chen and Scott MacBain from Carrier Corporation as the new co-chairs of the SyracuseCoE Industry Partner Council. In…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.