Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Students Design 3D Metal Printer for GE

Wednesday, June 7, 2017, By Alex Dunbar
Share
College of Engineering and Computer ScienceStudents

Commercial 3D printers commonly use thin layers of a material, often a polymer, to construct computer-aided designs or scanned models. Using metal in 3D printing has also become possible using certain types of industrial printers. This process is also known as additive manufacturing. Parts and components made out of aluminum, steel, brass, copper, titanium and other metals can be printed using fine particles of metal powder.

Students design 3D metal

Mechanical and aerospace engineering students Advin Zhushma, left, and Colin Hofer present information about the system they designed to use metal powders within a 3D printed part.

The demand for metal 3D printed parts is increasing, but current printers are expensive and are generally limited to using one metal powder at a time. Syracuse University mechanical and aerospace engineering students Advin Zhushma ’17, Colin Hofer ’17, Jeffrey Clark ’17, Alejandro Valencia ’17, Geoffrey Vaartstra ’17, Ruiquing Yin ’17, Bryan Morris ’17, Carter Kupchella ’17 and Joshua Beckerman ’17 worked with the General Electric (GE) Global Research Center to design and prototype a system that can use multiple materials at the same time. The teams designed it as their senior design capstone project, an opportunity made possible by Joseph Vinciquerra (’00, G’02) at GE.

Their printer demonstrates one possible way for depositing different metal powders within a 3D printed part. The students say using multiple materials may one day reduce production time and allow for printed parts that weigh less than traditionally machined materials. Testing also showed the students’ concept could eventually be used to make components previously considered unbuildable.

“You can do different patterns within one layer,” says Zhushma. “It allows you to use materials of one property where you need it and materials with other properties elsewhere. Parts can have the same performance but be a lot lighter.”

Hofer and Zhushma say the emergence of additive technology could allow for mass production of metal parts like never before.

“We’ve never had the opportunity to optimize the geometry of parts without the necessity of extensive milling of materials,” says Hofer.

The students presented their research and a functioning prototype to GE. They hope current and future SU students will continue to look at ways to make 3D printing more efficient and affordable.

“There is a lot of research to be done on materials and metal alloys in particular,” says Hofer. “We’re happy that GE has given SU students the opportunity to contribute to this exciting technology field.”

Vinciquerra, principal engineer and technology platform leader for additive materials at GE Global Research comments, “Working with the students throughout the semester—watching them take an idea through detailed design and then ultimately producing a working prototype—was mutually exciting. These are real-world technology efforts in a fast-moving landscape, and it was great to be able to bring the senior MAE class along for the ride.”

  • Author

Alex Dunbar

  • Recent
  • Drama Department to Virtually Present New Theatrical Work Inspired by University’s 150th Anniversary
    Saturday, January 23, 2021, By Erica Blust
  • Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research
    Saturday, January 23, 2021, By Alex Dunbar
  • Special Collections Research Center Launches Latin American 45s Digital Collection
    Saturday, January 23, 2021, By Cristina Hatem
  • VPA Faculty to Present World Premieres at Society for New Music Concert Jan. 31
    Saturday, January 23, 2021, By News Staff
  • ‘Democracy on Trial: Can We Save It?’
    Friday, January 22, 2021, By News Staff

More In STEM

Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research

Electrical engineering and computer science (EECS) Professor Farzana Rahman received a 2020 Google exploreCSR award to fund the development of an undergraduate student engagement workshop program, Research Exposure in Socially Relevant Computing (RESORC). The RESORC program will provide research opportunities…

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.