Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Theoretical Physicist Elected American Physical Society Fellow

Tuesday, October 18, 2016, By Elizabeth Droge-Young
Share

Professor of Physics Simon Catterall was recently elected as an American Physical Society (APS) Fellow. The APS Division of Computational Physics nominated Catterall for his contributions to lattice field theory, a framework used to explore how subatomic particles interact, yielding insights into how matter behaved shortly after the Big Bang.

Simon Catterall

Simon Catterall

“It’s very gratifying to see that one’s research is appreciated by the wider community of physicists. This is work that I have been pursuing for more than a decade, and it’s been exciting. We have made a lot of progress and its nice to see that it is well recognized,” Catterall says.

The APS is a nonprofit organization that aims to promote physics through publishing top-notch physics journals, sponsoring scientific meetings and performing outreach. Catterall’s work has been published in APS journals including Physical Review D and Physical Review Letters. The organization elects fellows based on an APS member’s “exceptional contributions to the physics enterprise.”

“This is well-deserved recognition for Simon’s invention of new ways to simulate the physics of subatomic particles using supercomputers,” says Alan Middleton, professor and department chair. “It is most impressive that Simon made these contributions while also being an outstanding teacher and serving administratively as associate chair.”

Catterall’s recognized work focuses on the use of lattice field theory methods to explore extensions of the so-called Standard Model of particle physics, which describes the most elementary particles of nature and their interactions. For example, because the nucleus of an atom is made up of even smaller particles, known as quarks, lattice field theory can describe the structure of an atom’s nucleus based on the quark’s interactions.

“Understanding how the nucleus of an atom works can be used to predict the behavior of matter at extreme densities and pressures—such as in neutron stars or at times shortly after the Big Bang,” Catterall says.

Beyond that, Catterall’s work attempts to reconcile two areas of study in physics: general relativity, which describes the universe at large scales, and quantum mechanics, which deals with the very, very small. To this end, he works on theories of quantum gravity, which take into account quantum fluctuations of gravity. Recently, this has included using numerical simulations to study a newly conjectured spacetime symmetry called “supersymmetry,” which connects particles mediating forces with matter particles.

“Efforts to look for new physics beyond the Standard Model are concerned with really big questions, like ‘What is the origin of mass for fundamental particles? Are there extra dimensions of space? How do we merge quantum mechanics with Einstein’s theory of general relativity?’ Lattice gauge theory methods are useful in answering all of these questions,” Catterall says.

Catterall belongs to a four-faculty-member theory group, with two post-doctoral scholars and nine graduate students as well as undergraduate researchers. They are funded by a Department of Energy grant supporting research ranging from Catterall’s specialty of lattice gauge theory to exploring physics at play in the early universe to explaining experimental results from the Large Hadron Collider at the European Organization for Nuclear Research (CERN).

Catterall is the 21st professor in Syracuse’s lauded physics department to be awarded this honor since the first fellow was elected in 1949. Current Syracuse APS Fellows include physics professors Marina Artuso, Mark Bowick, Duncan Brown, Cristina Marchetti, Alan Middleton, Peter Saulson, Eric Schiff, Tomasz Skwarnicki, Paul Souder, Sheldon Stone and Gianfranco Vidali, as well as engineering and computer sciences professor Mark Glauser.

  • Author

Elizabeth Droge-Young

  • Recent
  • Unearthing Stories for the Erie Canal’s 200th Anniversary
    Saturday, September 27, 2025, By Madelyn Geyer
  • Graduate Students Invent Slippery, Water-Repellent Surface Using Wax Candles
    Friday, September 26, 2025, By News Staff
  • Syracuse University Appoints Dan Dillon as Senior Vice President for Business Development
    Friday, September 26, 2025, By News Staff
  • Architecture Students Awarded Prizes in National Steel Design Competition
    Thursday, September 25, 2025, By Julie Sharkey
  • Brett Goldstein ’01 Joins Libraries Advisory Board
    Thursday, September 25, 2025, By Cristina Hatem

More In STEM

Graduate Students Invent Slippery, Water-Repellent Surface Using Wax Candles

Imagine you are standing on a slippery surface and the slightest imbalance makes you stumble. Researchers in the College of Engineering and Computer Science have developed such a surface, not for you, but for water droplets. The super-slippery coating, called…

Protecting the Grid: Engineering in Action

On April 28, 2025, a major power outage affected millions across Spain, Portugal and parts of southern France due to what authorities described as a “severe disruption.” Although the exact cause was not immediately confirmed, concerns quickly arose about the…

Syracuse University Among First Universities to Provide Campuswide AI Access to Anthropic’s Claude for Education

Syracuse University today announced a groundbreaking partnership with Anthropic, the artificial intelligence (AI) research and safety company, to provide every student, faculty and staff member with access to Claude for Education, Anthropic’s cutting-edge artificial intelligence designed specifically for academic environments….

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.