Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Multidisciplinary Team Wins NSF Award to Study Distributed Energy Markets

Friday, October 14, 2016, By J.D. Ross
Share
afasdfsadfasdf

Researchers from four schools and colleges at Syracuse University are researching two-way, distributed energy market designs.

As the traditional, centralized way of producing and distributing electricity gives way to a future of decentralized, “smart” energy production and consumption, policymakers, producers and regulators must understand the security and privacy risks inherent in “distributed” energy production and in encouraging consumers to better manage, even produce, their own energy.

That’s why an interdisciplinary team of Syracuse University cybersecurity, engineering, economics and law experts, led by School of Information Studies (iSchool) faculty member Jason Dedrick, are conducting research into various “two-way, distributed” energy market designs to assess potential security and privacy risks inherent in each, and the trade-offs between reducing risk and optimizing market performance.

researchers

Funded with a $344,184 grant from the National Science Foundation, the team is drawn from the iSchool, the College of Engineering and Computer Science, the Maxwell School of Citizenship and Public Affairs and the College of Law. It will employ mixed methods to conduct the market assessment, including interviews, market structure and data flow modeling, simulations using real world electricity use data and security threat analysis.

“In the ‘smart grid,’ electricity and information will flow back and forth among households, businesses and small producers,” explains Dedrick, Professor of Information Systems and the project’s principal investigator (PI). “Consumers will be able to create their own power and sell it back to the grid, while information about demand, supply and performance will flow to and from appliances, electric cars and solar cells and other local generators.”

But, observes Dedrick, there are significant risks associated with the two-way, distributed smart grid. Networked appliances could be vulnerable to cyber attacks. High-speed, decentralized electricity trading will make it harder to identify fraud. And there might be opportunities for market manipulation, privacy breaches and even physical damage to the national infrastructure.

“The wide range of new participants and devices in a two-way, distributed smart grid creates many new cybersecurity vulnerabilities. Our goal in this project is to determine the degree of vulnerability of different market configurations and to identify resilient approaches,” says Co-PI Professor Peter Wilcoxen, Director of the Center for Environmental Policy and Administration at the Maxwell School. “Our research focuses on the different effects of privacy, security and integrity measures on the operation of the grid and energy markets, including impacts on the stability of the gird, the privacy of participants and the trustworthiness of the market—that is, can participants be confident that payments are fair and that prices are not overly volatile?”

The results of this two-year project will provide guidance to policymakers, regulators and market participants so that an effective market can be designed for a two-way, distributed smart grid, one that incorporates necessary security and privacy protections without burdening the market’s function.

Dedrick will take the lead in collecting data on current and planned distributed energy markets and security policies, while Wilcoxen will lead the development, testing and analysis of market simulation models. Cybersecurity risks will be analyzed by Co-PI Steve Chapin, associate professor of computer science in the College of Engineering and Computer Science; and Keli Perrin, assistant director of the Institute for National Security and Counterterrorism, will draft privacy impact assessments for proposed markets.

  • Author

J.D. Ross

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.