Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Multidisciplinary Team Wins NSF Award to Study Distributed Energy Markets

Friday, October 14, 2016, By J.D. Ross
Share
afasdfsadfasdf

Researchers from four schools and colleges at Syracuse University are researching two-way, distributed energy market designs.

As the traditional, centralized way of producing and distributing electricity gives way to a future of decentralized, “smart” energy production and consumption, policymakers, producers and regulators must understand the security and privacy risks inherent in “distributed” energy production and in encouraging consumers to better manage, even produce, their own energy.

That’s why an interdisciplinary team of Syracuse University cybersecurity, engineering, economics and law experts, led by School of Information Studies (iSchool) faculty member Jason Dedrick, are conducting research into various “two-way, distributed” energy market designs to assess potential security and privacy risks inherent in each, and the trade-offs between reducing risk and optimizing market performance.

researchers

Funded with a $344,184 grant from the National Science Foundation, the team is drawn from the iSchool, the College of Engineering and Computer Science, the Maxwell School of Citizenship and Public Affairs and the College of Law. It will employ mixed methods to conduct the market assessment, including interviews, market structure and data flow modeling, simulations using real world electricity use data and security threat analysis.

“In the ‘smart grid,’ electricity and information will flow back and forth among households, businesses and small producers,” explains Dedrick, Professor of Information Systems and the project’s principal investigator (PI). “Consumers will be able to create their own power and sell it back to the grid, while information about demand, supply and performance will flow to and from appliances, electric cars and solar cells and other local generators.”

But, observes Dedrick, there are significant risks associated with the two-way, distributed smart grid. Networked appliances could be vulnerable to cyber attacks. High-speed, decentralized electricity trading will make it harder to identify fraud. And there might be opportunities for market manipulation, privacy breaches and even physical damage to the national infrastructure.

“The wide range of new participants and devices in a two-way, distributed smart grid creates many new cybersecurity vulnerabilities. Our goal in this project is to determine the degree of vulnerability of different market configurations and to identify resilient approaches,” says Co-PI Professor Peter Wilcoxen, Director of the Center for Environmental Policy and Administration at the Maxwell School. “Our research focuses on the different effects of privacy, security and integrity measures on the operation of the grid and energy markets, including impacts on the stability of the gird, the privacy of participants and the trustworthiness of the market—that is, can participants be confident that payments are fair and that prices are not overly volatile?”

The results of this two-year project will provide guidance to policymakers, regulators and market participants so that an effective market can be designed for a two-way, distributed smart grid, one that incorporates necessary security and privacy protections without burdening the market’s function.

Dedrick will take the lead in collecting data on current and planned distributed energy markets and security policies, while Wilcoxen will lead the development, testing and analysis of market simulation models. Cybersecurity risks will be analyzed by Co-PI Steve Chapin, associate professor of computer science in the College of Engineering and Computer Science; and Keli Perrin, assistant director of the Institute for National Security and Counterterrorism, will draft privacy impact assessments for proposed markets.

  • Author

J.D. Ross

  • Recent
  • Auxiliary Services Announces Next Steps in Office Refreshment, Vending Transitions
    Thursday, August 14, 2025, By Jennifer DeMarchi
  • Whitman School Names Julie Niederhoff as Chair of Marketing Department
    Wednesday, August 13, 2025, By Caroline K. Reff
  • Syracuse Stage Announces Auditions for 2025-26 Theatre for the Very Young Production ‘Tiny Martians, Big Emotions’
    Wednesday, August 13, 2025, By Joanna Penalva
  • 5 Things to Know About New Student Convocation Speaker Andrea-Rose Oates ’26
    Wednesday, August 13, 2025, By John Boccacino
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.