Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Passive Liquid Flow Can Aid Nanotechnology Development, Study Suggests

Wednesday, September 21, 2016, By Elizabeth Droge-Young
Share

A new study, inspired by water’s movement from roots to leaves in tall trees, shows that a certain kind of passive liquid flow, where liquids naturally move in response to surface atomic interactions instead of being driven by external forces like pumps, is remarkably strong. By virtually modeling the way atoms interact at a solid surface, College of Engineering and Computer Science researchers suggest that passive liquid flow could serve as a highly efficient coolant-delivery mechanism without the need for pumps. The results, published in Langmuir,  also have implications for the development of new nanoscale technology.

Leaf with computer chip

By virtually modeling the way atoms interact at a solid surface, College of Engineering and Computer Science researchers suggest that passive liquid flow could serve as a highly efficient coolant-delivery mechanism without the need for pumps.

“We were surprised at the strength of the passive liquid flow we obtained, which showed that it can used to remove a large amount of heat over a very small surface area,” says Shalabh Maroo, assistant professor of mechanical and aerospace engineering and senior author on the new study.

Surface-driven passive liquid flow is different from the more widely known capillary action. Capillary action, where liquid is seemingly sucked up into very narrow spaces, is primarily governed by vapor-liquid interactions and has been studied extensively. Capillary action can be seen in man-made and natural systems, including water wicking up a piece of fabric or paper.

Alternately, surface-driven flow arises from molecular interactions between a solid surface and the liquid. The current research found that surface-driven flow is much stronger than capillary action. “It presents an opportunity to design technological systems that can benefit from these stronger flows,” Maroo says of the study’s practical applications.

In the current study, Maroo and then-Syracuse Ph.D. student Sumith YD, lead author of the study, computer simulated interacting atoms of liquids and solid surfaces to better understand how passive flow works at an atomic level. (YD is now a post-doc at the University of Georgia.) “These simulations provide valuable insight into the process, and can help us in designing experiments to realize heat removal devices for cooling electronics,” Maroo says.

As electronics have gotten smaller, the problem of cooling next-generation technology has become more difficult, Maroo says. For new devices, like integrated circuit chips, transistors and concentrated photovoltaic devices, heat needs to be dissipated at a greater amount per surface area. For example, a household iron generates roughly 5 watts per squared centimeter of heat. Next-generation devices can create up to 1,000 watts of heat over the same area.

Building off this research, Maroo aims for creation of cooling devices that can dissipate the massive amount of concentrated heat generated by small-scale devices through surface-driven passive flow. Liquid would continually evaporate at the hot surfaces, while simultaneously being continually drawn to the areas requiring cooling by the passive flow mechanism.

“Advancements in high heat flux removal through passive flow techniques are critical for developing next-generation energy and electronic devices,” Maroo says. “Nanoscale evaporation heat transfer, coupled with surface-driven passive flow, can combine high heat flux removal with passive liquid supply; hence, pursuing this potentially disruptive technology is of critical importance.”

  • Author

Elizabeth Droge-Young

  • Recent
  • Art Museum Acquires Indian Scrolls Gifted by SUNY Professor
    Wednesday, July 23, 2025, By Taylor Westerlund
  • Mihm Recognized for Fostering ‘Excellence in Public Service for the Next Generation’
    Wednesday, July 23, 2025, By Jessica Youngman
  • Rabbi Natan Levy Appointed Campus Rabbi for Syracuse Hillel and Jewish Chaplain at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • Imam Amir Durić Appointed Assistant Dean for Religious and Spiritual Life at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • College of Law’s Veterans Legal Clinic Receives Justice for Heroes Grant
    Tuesday, July 22, 2025, By Robert Conrad

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.