Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Researchers to Develop a New Category of Biomaterials

Thursday, September 1, 2016, By Matt Wheeler
Share

Most people know someone with a hip or knee implant. These artificial joints are made up of metals and polymers known as biomaterials, which are essentially materials that can be safely introduced into the human body. Biomaterials can also help us understand how healthy or diseased cells and tissues work, and how cells and tissues respond when they come into contact with them. Certain biomaterials are designed to be “smart”—altering their stiffness or surface in response to triggers like exposure to water or light. Others can even control cells and tissues to encourage healing.

polymer

A polymer

In a new research project funded by the National Science Foundation’s biomaterials program, the College of Engineering and Computer Science‘s Associate Professor Jay Henderson, Assistant Professor Ian Hosein and Bucknell’s Patrick Mather will create a new category of biomaterials. These new biomaterials will not only have specific properties that cells and tissues respond to, but will also be “smart” and capable of responding to the presence of the cells and tissues. By studying the back-and-forth interaction between the material and the cells and tissues, the team will develop a new understanding of how cells and tissues work and how materials can be used to control them.

Henderson says, “Stimuli responsive biomaterials have been developed to assay or control biological systems, but the potential of these biomaterials may be largely untapped. Integrating stimuli responsive biomaterials with biological systems to create hybrid feedback systems will provide new insight into phenomena at the interface of synthetic and living systems.”

Henderson, Hosein, Mather, and their teams of student researchers will create these new stimuli responsive shape-memory polymers and study them in innovative synthetic/living feedback systems with three main objectives—to tune cytocompatible shape-memory polymers for photo-thermal stimulation; to develop and understand enzyme-responsive shape-memory polymers; and to study synthetic and living feedback systems. This work will lead to novel material designs and enable the discovery of new material phenomena.

In addition to funding an advance in the biomedical field, the team’s NSF grant will continue and expand a yearly two-day workshop to train Central New York STEM teachers in “Making Smart Materials.”

  • Author

Matt Wheeler

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.