Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Clear for Landing—Navy Funds Fluid Dynamics Research

Thursday, September 1, 2016, By Matt Wheeler
Share
plane

Landing an airplane on an aircraft carrier can be dangerous.

Landing a plane on an aircraft carrier is a dangerous maneuver. There’s only so much space to land, and ships are moving targets. Ships heave. They sway. They surge. They pitch, roll and yaw. Plus, airplanes move similarly in the air. Pilots have to resist these motions to stay steady while being pummeled by strong gusts of wind coming off the ocean. All of this adds up to a need for a better understanding of the swirling forces that engulf planes’ wings and make touchdown so perilous.

Assistant Professor Melissa Green, an expert in fluid dynamics at Syracuse University, along with Professor David Rival of Queen’s University, have been awarded a grant from the Office of Naval Research to study the topology of force production in unsteady flows around swept wings. This joint proposal will study the axial, vertical and lateral gust responses over a generic swept-wing body.

Melissa Green

Melissa Green

In her lab at the Syracuse Center of Excellence and the OTTER Lab at Queen’s University, Green’s and Rival’s research teams will conduct experiments to acquire time-resolved 3D flow fields, pressure, force and moment data on a model performing analogous surge, pitch and yaw motions underwater in an optical towing tank. The team will employ comprehensive Eulerian and Lagrangian analyses to reveal the full unsteady 3D flow structure topology, and will result in a description of how pressure/force distributions and moments depend on interactions with various gust waveforms.

Green says, “Air is a fluid, so the flow fields that we study in our water tank can be applied to the flow of air around airplane wings. It’s not overstating it to say that a better understanding of fluid dynamics could lead to advancements that would make flying and landing planes much safer for Navy pilots and sailors.”

  • Author

Matt Wheeler

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.