Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded NSF Grant to Study Collective Behavior of Active Matter

Wednesday, August 17, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has been awarded a major grant to support her ongoing study of active matter—collections of self-driven entities that take energy from the environment to produce coordinated motion.

M. Cristina Marchetti

M. Cristina Marchetti

Syracuse’s newest Distinguished Professor, M. Cristina Marchetti, is using a $420,000 award from the National Science Foundation to characterize the physics of organization in nature, from the flocking behavior of birds to the coordinated motion of cells in morphogenesis, the biological process in which an organism develops its shape.

“One may think that the organization seen in many living systems is controlled by complex communication pathways or biochemical signaling,” says Marchetti, who doubles as the William R. Kenan Jr. Professor of Physics. “But over the past 20 years, researchers have shown that many aspects of organization are captured by simple physical rules, similar to those that control the organization of inert [non-living] matter. This gives us a powerful new mathematical framework with which to quantify coordinated behaviors that are different from those of individuals.’’

Marchetti is focusing on Myxococcus xanthus, a soil-dwelling bacterium that seems to “glide” on a solid surface, without use of a flagellum. Myxo, as it is colloquially called, has a complex life cycle controlled by interactions with other individuals and environmental cues.

“One of our goals is to provide a mathematical framework for describing the aggregation of myxo under starvation conditions, as well as different transformations triggered by physical mechanisms, as opposed to, say, genetics,” Marchetti says. “This could reduce the vast number of genetic possibilities that have to be investigated to understand the developmental cycle of these bacteria.”

Using theory and computer simulations, she and her students will work with experimentalists from Syracuse and Princeton to develop minimal rules for emergent behavior in myxo.

Marchetti also studies synthetic systems with life-life properties, including microswimmers, which are powered by chemical reactions and can assemble into predesigned structures, and swarms of nanobots, capable of self-organized behavior. Her research team is particularly intent on figuring out how synthetic microswimmers may be used to assemble and organize inert particles.

“Our dream is to formulate rules that enable us to engineer smart materials, capable of activity assembly, active-assembly, reconfiguration and self-healing,” says Marchetti, who will be assisted by postdoctoral researchers, graduate students and undergraduates. “The interdisciplinary nature of this work creates opportunities for students to be trained at the interface of physical and life science. … We are committed to providing graduate training that crosses traditional disciplinary boundaries.”

  • Author

Rob Enslin

  • Recent
  • Empowering Learners With Personalized Microcredentials, Stackable Badges
    Thursday, July 3, 2025, By Hope Alvarez
  • WISE Women’s Business Center Awarded Grant From Empire State Development, Celebrates Entrepreneur of the Year Award
    Thursday, July 3, 2025, By Dawn McWilliams
  • Rose Tardiff ’15: Sparking Innovation With Data, Mapping and More
    Thursday, July 3, 2025, By News Staff
  • Paulo De Miranda G’00 Received ‘Much More Than a Formal Education’ From Maxwell
    Thursday, July 3, 2025, By Jessica Youngman
  • Law Professor Receives 2025 Onondaga County NAACP Freedom Fund Award
    Thursday, July 3, 2025, By Robert Conrad

More In STEM

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Setting the Standard and Ensuring Justice

Everyone knows DNA plays a crucial role in solving crimes—but what happens when the evidence is of low quantity, degraded or comes from multiple individuals? One of the major challenges for forensic laboratories is interpreting this type of DNA data…

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.