Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded NSF Grant to Study Collective Behavior of Active Matter

Wednesday, August 17, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has been awarded a major grant to support her ongoing study of active matter—collections of self-driven entities that take energy from the environment to produce coordinated motion.

M. Cristina Marchetti

M. Cristina Marchetti

Syracuse’s newest Distinguished Professor, M. Cristina Marchetti, is using a $420,000 award from the National Science Foundation to characterize the physics of organization in nature, from the flocking behavior of birds to the coordinated motion of cells in morphogenesis, the biological process in which an organism develops its shape.

“One may think that the organization seen in many living systems is controlled by complex communication pathways or biochemical signaling,” says Marchetti, who doubles as the William R. Kenan Jr. Professor of Physics. “But over the past 20 years, researchers have shown that many aspects of organization are captured by simple physical rules, similar to those that control the organization of inert [non-living] matter. This gives us a powerful new mathematical framework with which to quantify coordinated behaviors that are different from those of individuals.’’

Marchetti is focusing on Myxococcus xanthus, a soil-dwelling bacterium that seems to “glide” on a solid surface, without use of a flagellum. Myxo, as it is colloquially called, has a complex life cycle controlled by interactions with other individuals and environmental cues.

“One of our goals is to provide a mathematical framework for describing the aggregation of myxo under starvation conditions, as well as different transformations triggered by physical mechanisms, as opposed to, say, genetics,” Marchetti says. “This could reduce the vast number of genetic possibilities that have to be investigated to understand the developmental cycle of these bacteria.”

Using theory and computer simulations, she and her students will work with experimentalists from Syracuse and Princeton to develop minimal rules for emergent behavior in myxo.

Marchetti also studies synthetic systems with life-life properties, including microswimmers, which are powered by chemical reactions and can assemble into predesigned structures, and swarms of nanobots, capable of self-organized behavior. Her research team is particularly intent on figuring out how synthetic microswimmers may be used to assemble and organize inert particles.

“Our dream is to formulate rules that enable us to engineer smart materials, capable of activity assembly, active-assembly, reconfiguration and self-healing,” says Marchetti, who will be assisted by postdoctoral researchers, graduate students and undergraduates. “The interdisciplinary nature of this work creates opportunities for students to be trained at the interface of physical and life science. … We are committed to providing graduate training that crosses traditional disciplinary boundaries.”

  • Author

Rob Enslin

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.