Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biologist Awarded NIH Grant to Study Link Between Early-Development Stress, Adult Disease

Wednesday, August 10, 2016, By Rob Enslin
Share
College of Arts and Sciencesresearch

A biologist in the College of Arts and Sciences has been awarded a grant to study the link between early-development stress and adult disease.

Sarah Hall

Sarah Hall

Assistant Professor Sarah Hall is using a $446,000 grant from the National Institutes of Health to investigate how fetal and childhood stress triggers long-term changes in gene activity in neurons. Using a microscopic worm called Caenorhabditis elegans, she and her colleagues will characterize the epigenetic mechanisms that regulate the environmental programming of gene expression, leading to certain behavioral traits.

“Increasing evidence suggests that stressful environments early in life can affect the health and behavior of adults,” says Hall, citing the well-worn example of how stressful conditions in the womb often set the stage for depression and metabolic disorders later in life. “These effects are thought to be caused by changes in the regulation of gene expression in specific tissues. What’s not clear, however, is how a particular stress causes long-term changes in gene activity.”

Enter C. elegans, an animal model system for genetics and development, whose fundamental machinery is similar to that of vertebrates, including humans. Previous studies by Hall have shown that gene expression varies widely between adult worms exposed to stress and identical worms that have not. Hall and her team want to know what accounts for these changes.

Part of the answer may be found in RNA interference (RNAi), a process by which cells use RNA molecules to regulate gene activity. Hall’s lab investigates how RNAi regulates genes as a result of stress. Their work centers on a protein called OSM-9, required for a variety of regulatory behaviors in C. elegans and similar to many proteins in humans with the same function.

“OSM-9 activates neurons when they detect a specific environmental stimulus,” says Hall, who also is on the faculty of the Interdisciplinary Neuroscience Program and the Forensic and National Security Sciences Institute. “It’s required for attractive and repulsive behaviors and, for worms, to detect being touched.”

Hall explains that adult worms retain a cellular memory of their environmental history, which is reflected in changes in gene expression, genome-wide chromatin state, behaviors and life-history traits.

“We also know that OSM-9 is down-regulated specifically in animals that experience early-life stress, thus correlating with altered sensory behaviors,” she adds.

C. elegans

C. elegans is a free-living, transparent roundworm, approximately one millimeter long. Here, bacteria (in blue) surround the worm’s neurons (red) and digestive tract (green). (Photo courtesy of Heiti Paves / Shutterstock Inc.)

Armed with C. elegans, Hall and her colleagues plan to demonstrate how RNAi and chromatin remodeling pathways (also necessary to regulate gene expression) affect the developmental programming of OSM-9. They also are using bioinformatics to study the regulation of OSM-9, as well as the behavioral consequences of its developmental programming.

“Our experiments will test whether or not altered behaviors due to down-regulation of OSM-9 promote outcrossing [i.e., breeding] among animals with environmental stress, leading to greater genetic diversity within their population,” Hall says. “We also are working to identify additional genes expressed in neurons that are regulated by developmental programming similar to OSM-9.”

Given the similarity of gene regulatory pathways across the species, Hall hopes that her work will inform related investigations into higher organisms, including humans.

“Mechanisms that regulate the establishment and maintenance of gene-expression changes in adulthood due to early-life stress in humans are largely uncharacterized,” she adds. “Our research hopes to change this, leading to a better understanding of the epigenetic programming in the human brain.”

  • Author

Rob Enslin

  • Recent
  • ‘Democracy on Trial: Can We Save It?’
    Friday, January 22, 2021, By News Staff
  • COVID-19 Update: Answering Your Frequently Asked Questions
    Friday, January 22, 2021, By News Staff
  • Future of News Production the Focus of NSF Planning Grant
    Thursday, January 21, 2021, By Wendy S. Loughlin
  • College of Law Adds Vincent H. Cohen ’92, L’95 to Board of Advisors
    Wednesday, January 20, 2021, By Martin Walls
  • Students Invited to Network and Skill-Build with Alumni
    Wednesday, January 20, 2021, By Gabrielle Lake

More In STEM

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

$1.5 Million NIH Grant Funds ALS-Linked Research

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.