Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Acuna Publishes Groundbreaking Chunking Research in Nature Communications

Monday, July 11, 2016, By J.D. Ross
Share
Research and CreativeSchool of Information Studies

Think about a simple task you learned a long time ago, such as memorizing your phone number or learning how to tie your shoe laces. Chances are, you did this using a method called chunking. You put like things together in your mind—the area code ahead of the phone number, for instance, or the looping action of the lace ahead of pulling the knot tight.

Daniel Acuna

Daniel Acuna

As people repeat movements, these elemental actions are merged into chunks. Even after practice has made perfect, and you’ve learned to tie your laces, the basic complex movements remain organized in your brain as chunks.

Research published recently, and co-authored by School of Information Studies (iSchool) assistant professor Daniel Acuna, attempts to shed light on why chunking occurs, and how learning in this fashion can be cost effective as far as the brain power exerted to learn in this way.

Published in the journal Nature Communications with a team of scientists across the U.S., including Pavan Ramkumar and Konrad Kording from the Rehabilitation Institute of Chicago and Northwestern University, Acuna’s research is groundbreaking, as it makes theoretical advances on a well-known behavioral phenomenon in psychology, whose characteristics were well documented but whose causes were poorly understood.

“Chunking is taxing on your brain’s mental power,” says Acuna, “really it’s better not to chunk, but the more you do it, the more you improve, it takes you less time to recall things. The brain can learn complex movements with lower upfront costs that pay off in the long run.”

“We proposed a theoretical model for the causes of chunking using the modern tools of computational motor control,” Acuna explains. “By framing chunking as an economic tradeoff in the motor system, it opens up a broad range of questions regarding how the brain controls movements.”

Traditionally, chunking has been studied in the working memory literature. The classic Miller’s study from the 1950s, one of the most frequently cited papers in psychology, established that the capacity of a person’s working memory, measured in discrete units that can be remembered at once, is 7—plus or minus 2. Interestingly, the causal underpinnings described in such an influential study remain poorly understood.

“Understanding chunking, and why the brain behaves the way it does, will be key in working with people suffering from neurological disorders such as Parkinson’s disease, Huntington’s disease and stroke,” says Acuna.

This will be crucial for early diagnosis, treatment and rehabilitation therapy. Framing chunking as an economic tradeoff offers a different perspective on motor learning and its disorders. For instance, the irregular nature of movements in a patient who has suffered a stroke may be attributed to lower computational budgets for motor learning, and the inefficient movements seen in stroke may thus be adaptive to this neurological budget. Rehabilitation approaches can benefit from this insight.

“I’m very interested in how people make decisions,” says Acuna, tying this recent research to his overall scholarship. “It helps me understand how to create systems that allow people to make decisions better, and to allow information systems to augment human capabilities.”

By making systems better, it can help humans do things better, notes Acuna. “How people retrieve information, when they group items as they learn more about a particular area, for example, by understanding how these groupings are happening and why they are happening, it is easier to develop systems that work the way humans need them to.”

To read Acuna’s findings, view the research on the Nature Communications website.

  • Author

J.D. Ross

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.