Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Acuna Publishes Groundbreaking Chunking Research in Nature Communications

Monday, July 11, 2016, By J.D. Ross
Share
Research and CreativeSchool of Information Studies

Think about a simple task you learned a long time ago, such as memorizing your phone number or learning how to tie your shoe laces. Chances are, you did this using a method called chunking. You put like things together in your mind—the area code ahead of the phone number, for instance, or the looping action of the lace ahead of pulling the knot tight.

Daniel Acuna

Daniel Acuna

As people repeat movements, these elemental actions are merged into chunks. Even after practice has made perfect, and you’ve learned to tie your laces, the basic complex movements remain organized in your brain as chunks.

Research published recently, and co-authored by School of Information Studies (iSchool) assistant professor Daniel Acuna, attempts to shed light on why chunking occurs, and how learning in this fashion can be cost effective as far as the brain power exerted to learn in this way.

Published in the journal Nature Communications with a team of scientists across the U.S., including Pavan Ramkumar and Konrad Kording from the Rehabilitation Institute of Chicago and Northwestern University, Acuna’s research is groundbreaking, as it makes theoretical advances on a well-known behavioral phenomenon in psychology, whose characteristics were well documented but whose causes were poorly understood.

“Chunking is taxing on your brain’s mental power,” says Acuna, “really it’s better not to chunk, but the more you do it, the more you improve, it takes you less time to recall things. The brain can learn complex movements with lower upfront costs that pay off in the long run.”

“We proposed a theoretical model for the causes of chunking using the modern tools of computational motor control,” Acuna explains. “By framing chunking as an economic tradeoff in the motor system, it opens up a broad range of questions regarding how the brain controls movements.”

Traditionally, chunking has been studied in the working memory literature. The classic Miller’s study from the 1950s, one of the most frequently cited papers in psychology, established that the capacity of a person’s working memory, measured in discrete units that can be remembered at once, is 7—plus or minus 2. Interestingly, the causal underpinnings described in such an influential study remain poorly understood.

“Understanding chunking, and why the brain behaves the way it does, will be key in working with people suffering from neurological disorders such as Parkinson’s disease, Huntington’s disease and stroke,” says Acuna.

This will be crucial for early diagnosis, treatment and rehabilitation therapy. Framing chunking as an economic tradeoff offers a different perspective on motor learning and its disorders. For instance, the irregular nature of movements in a patient who has suffered a stroke may be attributed to lower computational budgets for motor learning, and the inefficient movements seen in stroke may thus be adaptive to this neurological budget. Rehabilitation approaches can benefit from this insight.

“I’m very interested in how people make decisions,” says Acuna, tying this recent research to his overall scholarship. “It helps me understand how to create systems that allow people to make decisions better, and to allow information systems to augment human capabilities.”

By making systems better, it can help humans do things better, notes Acuna. “How people retrieve information, when they group items as they learn more about a particular area, for example, by understanding how these groupings are happening and why they are happening, it is easier to develop systems that work the way humans need them to.”

To read Acuna’s findings, view the research on the Nature Communications website.

  • Author

J.D. Ross

  • Recent
  • University Names 2025 ’CUSE50 Cohort, Honoring Alumni Entrepreneurship Around the World
    Monday, September 29, 2025, By News Staff
  • 9 ‘On My Own Time’ Artists Selected to Display Work at the Everson Museum of Art
    Monday, September 29, 2025, By News Staff
  • Syracuse Views Fall 2025
    Monday, September 29, 2025, By News Staff
  • Research by Maxwell Graduate Students Recognized by American Political Science Association
    Monday, September 29, 2025, By News Staff
  • Unearthing Stories for the Erie Canal’s 200th Anniversary
    Saturday, September 27, 2025, By Madelyn Geyer

More In STEM

Graduate Students Invent Slippery, Water-Repellent Surface Using Wax Candles

Imagine you are standing on a slippery surface and the slightest imbalance makes you stumble. Researchers in the College of Engineering and Computer Science have developed such a surface, not for you, but for water droplets. The super-slippery coating, called…

Protecting the Grid: Engineering in Action

On April 28, 2025, a major power outage affected millions across Spain, Portugal and parts of southern France due to what authorities described as a “severe disruption.” Although the exact cause was not immediately confirmed, concerns quickly arose about the…

Syracuse University Among First Universities to Provide Campuswide AI Access to Anthropic’s Claude for Education

Syracuse University today announced a groundbreaking partnership with Anthropic, the artificial intelligence (AI) research and safety company, to provide every student, faculty and staff member with access to Claude for Education, Anthropic’s cutting-edge artificial intelligence designed specifically for academic environments….

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.