Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

What a Potato Clock Can Teach Us About Fighting Disease

Thursday, July 7, 2016, By Matt Wheeler
Share
Research and Creative
A potato clock

A potato clock

Did you ever make a potato clock as a kid? You know, that science experiment where you jam copper and zinc wires into potatoes and connect them with miniature jumper cables to power a clock?

Did you know that the reaction that makes elementary school potato clocks tick could also fight infection and disease?

In published research, Professor Jeremy Gilbert found that when titanium and magnesium particles are galvanically coupled, like zinc and copper in a potato clock, an electrochemical reaction develops that produces a cell-killing effect. If applied to medical treatments, it may lead to treatment options for all kinds of infections—from superbugs to cancerous tumors.

“What makes the potato clock work is the large voltage difference between the copper and zinc. It causes a current to follow through the potatoes to drive the clock. There’s a voltage difference between the two metals that makes it possible. The bigger the difference, the stronger the reaction. Magnesium and titanium have nearly a two-volt difference. It’s a very strong coupling and it produces a powerful effect,” says Gilbert.

That powerful effect—a reductive electrochemical reaction that generates reactive oxygen intermediates—kills cells in close proximity.

Gilbert, an expert in biological implants like hip replacements, believes that one way these findings could be put to use in infection prevention for titanium implants. Infections that take hold on the surface of implants are notoriously challenging to defeat. They withstand even the most powerful antibiotics. By adding magnesium to the titanium surface of an implant, the implant itself is given the ability to kill bacteria before they are able to harm the patient.

This research also reveals an application for killing cancer cells. Our body normally has mechanisms to stop cells from dividing uncontrollably, but when it fails to do so, cancer develops. The negative voltages that Gilbert and his fellow researchers apply induce cellular apoptosis, or cell death, so it may be a way of killing cancer cells that don’t get the message to die off naturally.

This fundamental breakthrough provides a foundation for scientists to build upon and is a strong example of how science that can be understood for something as simple as a potato clock can be used to blaze a new trail in other areas.

Gilbert says, “It’s a novel idea to use an electrochemical process to adapt implants to control infections or treat other conditions. These findings will be the underpinning for new ideas in healthcare.”

  • Author

Matt Wheeler

  • Recent
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga
  • Years of Growth Fueled Women’s Club Ice Hockey Team to Success
    Tuesday, May 13, 2025, By Samantha Perkins
  • Utility Projects to Begin on Campus This Week; Temporary Closures and Detours Expected Throughout the Summer
    Monday, May 12, 2025, By Jennifer DeMarchi
  • Student Speaker Jonathan Collard de Beaufort ’25: ‘Let’s Go Be Brilliant’ (Video)
    Monday, May 12, 2025, By Kathleen Haley

More In STEM

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Distinguished ECS Professor Pramod K. Varshney Establishes Endowed Faculty Fellowship

Distinguished Professor Pramod K. Varshney has exemplified Orange excellence since joining the University as a 23-year-old faculty member. A world-renowned researcher and educator, he’s been recognized for his seminal contributions to information fusion and related fields, introducing new, innovative courses…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.