Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

What a Potato Clock Can Teach Us About Fighting Disease

Thursday, July 7, 2016, By Matt Wheeler
Share
Research and Creative
A potato clock

A potato clock

Did you ever make a potato clock as a kid? You know, that science experiment where you jam copper and zinc wires into potatoes and connect them with miniature jumper cables to power a clock?

Did you know that the reaction that makes elementary school potato clocks tick could also fight infection and disease?

In published research, Professor Jeremy Gilbert found that when titanium and magnesium particles are galvanically coupled, like zinc and copper in a potato clock, an electrochemical reaction develops that produces a cell-killing effect. If applied to medical treatments, it may lead to treatment options for all kinds of infections—from superbugs to cancerous tumors.

“What makes the potato clock work is the large voltage difference between the copper and zinc. It causes a current to follow through the potatoes to drive the clock. There’s a voltage difference between the two metals that makes it possible. The bigger the difference, the stronger the reaction. Magnesium and titanium have nearly a two-volt difference. It’s a very strong coupling and it produces a powerful effect,” says Gilbert.

That powerful effect—a reductive electrochemical reaction that generates reactive oxygen intermediates—kills cells in close proximity.

Gilbert, an expert in biological implants like hip replacements, believes that one way these findings could be put to use in infection prevention for titanium implants. Infections that take hold on the surface of implants are notoriously challenging to defeat. They withstand even the most powerful antibiotics. By adding magnesium to the titanium surface of an implant, the implant itself is given the ability to kill bacteria before they are able to harm the patient.

This research also reveals an application for killing cancer cells. Our body normally has mechanisms to stop cells from dividing uncontrollably, but when it fails to do so, cancer develops. The negative voltages that Gilbert and his fellow researchers apply induce cellular apoptosis, or cell death, so it may be a way of killing cancer cells that don’t get the message to die off naturally.

This fundamental breakthrough provides a foundation for scientists to build upon and is a strong example of how science that can be understood for something as simple as a potato clock can be used to blaze a new trail in other areas.

Gilbert says, “It’s a novel idea to use an electrochemical process to adapt implants to control infections or treat other conditions. These findings will be the underpinning for new ideas in healthcare.”

  • Author

Matt Wheeler

  • Recent
  • Syracuse Stage Announces Cast and Production Team of Musical ‘The Hello Girls’
    Friday, August 8, 2025, By Joanna Penalva
  • Expert Available for New Tariffs on India
    Friday, August 8, 2025, By Ellen Mbuqe
  • Syracuse Views Summer 2025
    Friday, August 8, 2025, By News Staff
  • Sport Management Professor Calls Historic First in MLB ‘Overdue’
    Thursday, August 7, 2025, By Keith Kobland
  • Scott Tainsky’s Research Focus Aligns Perfectly With New Falk College of Sport
    Thursday, August 7, 2025, By Matt Michael

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.