Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biologists Use Federal Grant to Advance Epigenetics

Thursday, June 23, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Biologists in the College of Arts and Sciences have been awarded a major grant to study an epigenetic mechanism used by cells to regulate gene expression—a process known as meiotic silencing.

Eleanor Maine

Eleanor Maine

Eleanor Maine, professor of biology, is the recipient of a multiyear, $427,000 grant award from the National Institute of General Medical Sciences, the National Institutes of Health and the U.S. Department of Health and Human Services. She and members of her research lab will use the award to investigate the mechanisms and developmental importance of meiotic silencing.

Epigenetic regulation is implicated in susceptibility to many diseases, including cancers, infectious diseases and neurodegenerative disorders.

“Our lab studies, among other things, epigenetic mechanisms that heritably switch genes on and off in the nucleus of a cell, without changing the genetic structure, ” Maine says. “We’re particularly interested in meiotic silencing, an epigenetic process that occurs in developing reproductive cells, or gametes. In animals, this process takes place at the chromatin level, where DNA combines with proteins to form dense, string-like structures [called nucleosomes].

Chromatin, which condenses into chromosomes during cell division, is composed of DNA strands that are wrapped around groups of small proteins called histones. Scientists know that histones and associated DNA make up nucleosomes, which are basic units of DNA packaging.

That histones may be chemically modified to regulate gene expression—something involving the tightening or loosening of DNA packaging—is central to Maine’s work. She is intrigued by the fact that heritable differences in DNA packaging can impact disease susceptibility.

“Epigenetic mechanisms are critical for regulating gene expression,” says Maine, an expert in the regulation of cell-fate during animal development. “Correct epigenetic regulation during development impacts offspring health and disease susceptibility. I want to understand how one such epigenetic mechanism, meiotic silencing, is accomplished and can promote fertility.”

Maine’s research revolves around Caenorhabditis elegans, a transparent, multicellular roundworm whose genetic and epigenetic makeup shares many features with mammals.

Meiotic silencing

Localized distribution of histone modifications in nuclei that are undergoing meiotic silencing (left column), and broad distribution in nuclei in which meiotic silencing is disrupted (right)

“It’s a model organism for studying chromatin regulation, in context of germline development,” she says, referring to the process that leads to reproductive cells, or gametes, in sexually reproducing organisms. “In C. elegans, the natural target for meiotic silencing is the male X chromosome; however, other chromosomes are targeted under certain conditions, such as when chromosome rearrangements are present. The altered structure of a targeted chromosome is thought of as a kind of protective mechanism.”

Maine explains that meiotic silencing is accomplished by DNA repair proteins collaborating with known epigenetic factors. She and her colleagues hope to elucidate the biological roles of these factors during germline development.

Although repair proteins are critical for gamete formation, Maine and others are unclear of how they work together in this context.

“Our studies will provide information that enables us to better grasp the mechanism of meiotic silencing,” says Maine, adding that such work has implications for understanding how epigenetic mechanisms impact the development of other tissues. “Sometimes, these mechanisms can go awry and lead to disease. ”

She and her colleagues will use various approaches—genetic, molecular, genomic, biochemical, cell biological—to study mechanisms that regulate germ-cell proliferation and gamete formation and, ultimately, produce healthy offspring.

They also want to figure out how mechanisms ensure the integrity of genetic material during gamete formation.

“Our observations are significant because they address a conserved epigenetic regulatory mechanism that is active in the germ line,” Maine says. “By understanding the mechanism and regulation of meiotic silencing, we’ll be able to investigate the developmental implications of the process.”

Maine hopes that, by studying meiotic silencing in C. elegans, she will better understand the process in more complex animals, including mammals.

“We’ve assembled a team of researchers with appropriate expertise to accomplish the proposed work,” she adds. “Graduate and undergraduate students will be integral to the project.”

  • Author

Rob Enslin

  • Recent
  • Chancellor Syverud Updates Senate on University Finances, Enrollment, Leaders and Shared Governance
    Thursday, September 18, 2025, By News Staff
  • Winners of LaunchPad’s 2025 Ideas Fest
    Thursday, September 18, 2025, By News Staff
  • Office of Community Engagement Hosts Events to Combat Food Insecurity
    Wednesday, September 17, 2025, By John Boccacino
  • Resistance Training May Improve Nerve Health, Slow Aging Process
    Wednesday, September 17, 2025, By Matt Michael
  • New Faculty Members Bring Expertise in Emerging Business Practices to the Whitman School
    Tuesday, September 16, 2025, By Dawn McWilliams

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.