Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse Helps LIGO Detect Second Pair of Colliding Black Holes

Wednesday, June 15, 2016, By News Staff
Share
College of Arts and Sciencesresearch

On December 26, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves from a second pair of colliding black holes. The news comes on the heels of LIGO’s first historic detection, which was made last fall and announced in February. Both detections confirm a major prediction of Albert Einstein’s 1915 general theory of relativity.

“This new detection proves that the first discovery wasn’t just luck,” says Stefan Ballmer, associate professor of physics at Syracuse University and a leading commissioner at the LIGO Hanford Observatory in Washington during the project’s recent upgrade. “By 2018, we could be seeing hundreds of black hole mergers a year.”

Physicists in the College of Arts and Sciences have been integral to LIGO’s success, since the first days of the project.

The University is home to one of the largest, most diverse research groups in the LIGO Scientific Collaboration, an international team of scientists who observes gravitational waves. The Syracuse University Gravitational-Wave Group includes faculty, research scientists and graduate and undergraduate students.

Amber Lenon

Amber Lenon

Amber Lenon ’16, who earned a bachelor’s degree in May, was one of the undergraduates whose research confirmed that the signal from the black holes was, indeed, real. “The waves were not as loud as those from the first detection, so we needed supercomputers and careful analysis of LIGO data to find the signal in the noise,” says Lenon, who is pursuing a Ph.D. in physics at West Virginia University.

Syracuse’s Information Technology Services, the Albert Einstein Institute in Hannover, Germany, and the Open Science Grid provided the computing power that Lenon and her LIGO collaborators used.

“The more black holes [that] LIGO sees, the more we learn,” says Laura Nuttall, a Syracuse research scientist who played a leading role in the writing of the publication that reported LIGO’s latest discovery. “This is truly the beginning of a new kind of astronomy.”

Duncan Brown, the Charles Brightman Professor of Physics and an expert in gravitational-wave astrophysics, says black holes are formed when massive stars explode in supernovae. “These explosions created the chemical elements that form the building blocks of life on our planet,” he says. “The black holes we observed last September and December can help us understand how stars explode and how the universe came to look like it does.”

Laura Nuttall

Laura Nuttall

Peter Saulson, the Martin A. Pomerantz ’37 Professor of Physics and co-founder of the LIGO Scientific Collaboration, says gravitational waves carry information about the nature of gravity that cannot be obtained any other way. “We saw the black holes orbiting each other about 30 times before they merged,” he says. “This allowed us to measure their masses more accurately than our first detection, where we caught only the last few orbits.”

LIGO has twin observatories in Richland, Wash. (known as LIGO Hanford), and Livingston, La. Using a technique called interferometry, the observatories detect ripples in the fabric of space and time that are produced, as two black holes merge to form a single, more massive black hole.

The LIGO Observatories, the Syracuse University Gravitational-Wave Group and the Open Science Grid are funded by the National Science Foundation. The LIGO Scientific Collaboration, whose members are based at more than 90 universities and research institutes in 15 countries, performs LIGO’s research and discoveries.

physicsguys

  • Author
  • Faculty Experts

News Staff

  • Stefan Ballmer

  • Peter R. Saulson

  • Recent
  • ‘Democracy on Trial: Can We Save It?’
    Friday, January 22, 2021, By News Staff
  • COVID-19 Update: Answering Your Frequently Asked Questions
    Friday, January 22, 2021, By News Staff
  • Future of News Production the Focus of NSF Planning Grant
    Thursday, January 21, 2021, By Wendy S. Loughlin
  • College of Law Adds Vincent H. Cohen ’92, L’95 to Board of Advisors
    Wednesday, January 20, 2021, By Martin Walls
  • Students Invited to Network and Skill-Build with Alumni
    Wednesday, January 20, 2021, By Gabrielle Lake

More In STEM

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

$1.5 Million NIH Grant Funds ALS-Linked Research

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.